位置算符

量子力學裏,位置算符position operator)是一種量子算符。對應於位置算符的可觀察量是粒子的位置。位置算符的本徵值是位置向量。採用狄拉克標記,位置算符 的本徵態 滿足方程式

其中, 是本徵值,是量子態為 的粒子所處的位置, 只是一個數值。

位置空間表現

設定量子態 {\displaystyle |\Psi \rangle ={\hat {x}}|\psi \rangle } 。量子態 {\displaystyle |\Psi \rangle }{\displaystyle |\psi \rangle } 的位置空間表現,即波函數,分別定義為

{\displaystyle \Psi (x)\ {\stackrel {def}{=}}\ \langle x|\Psi \rangle }
{\displaystyle \psi (x)\ {\stackrel {def}{=}}\ \langle x|\psi \rangle }

在位置空間裡,定義算符  

 

在位置空間裡,使用連續本徵態   所組成的基底,任意量子態   展開為

 

將量子算符   作用於量子態   ,可以得到

 

應用狄拉克正交歸一性  ,這方程式與左矢   的內積為

 

量子態   的展開式為

 

應用狄拉克正交歸一性,這方程式與左矢   的內積為

 

所以,兩個波函數    之間的關係為

 

總結,位置算符   作用於量子態   的結果   ,表現於位置空間,等價於波函數    的乘積   。位置算符   的位置空間表現是位算符   ,可以稱算符   為位置算符。

本徵函數

假設,在位置空間裡,位置算符  本徵值 本徵函數  。用方程式表達,[1]

 

這方程式的一般解為,

 

其中,  是常數, 狄拉克δ函數

注意到   無法歸一化

 

設定   ,函數   滿足下述方程式:

 

這性質不是普通的正交歸一性,這性質稱為狄拉克正交歸一性。因為這性質,位置算符的本徵函數具有完備性,也就是說,任意波函數   都可以表達為本徵函數的線性組合

 

雖然本徵函數   所代表的量子態是無法實際體現的,並且嚴格而論,不是一個函數,它可以視為代表一種理想量子態,這種理想量子態具有準確的位置   ,因此,根據不確定性原理,這種理想量子態的動量均勻分佈

期望值

採用位置空間表現,設想一個移動於一維空間的量子粒子。在這裏,希爾伯特空間是   ,是實值定義域平方可積函數的空間。[2]:11兩個態向量的內積是

 

對於任意量子態   ,可觀察量   的期望值為

 

位置算符   作用於量子態   的結果,表現於位置空間,等價於波函數    的乘積,所以,

 

粒子處於    微小區間內的機率是

 

粒子位置與機率的乘積在位置空間的積分,就是粒子位置的期望值。

三維案例

推廣至三維空間相當直截了當,參數為三維位置   的波函數為   ,位置的期望值[2]:41-42

 

其中,  是積分體積。

位置算符   的作用為

 

對易關係

位置算符與動量算符的對易算符,當作用於波函數時,會得到一個簡單的結果:

 

所以,  。這關係稱為位置算符與動量算符的對易關係。由於兩者的對易關係不等於 0 ,位置與動量彼此是不相容可觀察量   絕對不會擁有共同的基底量子態。一般而言,  的本徵態與   的本徵態不同。

根據不確定性原理

 

由於    是兩個不相容可觀察量,  。所以,  的不確定性與   的不確定性的乘積   ,必定大於或等於  

參考文獻

  1. ^ Griffiths, David J. Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. 2004: pp. 17, 104–109. ISBN 0-13-111892-7. 
  2. ^ 跳转到: 2.0 2.1 Sakurai, J. J.; Napolitano, Jim, Modern Quantum Mechanics 2nd, Addison-Wesley, 2010, ISBN 978-0805382914