泊松方程
此條目需要补充更多来源。 (2014年8月12日) |
泊松方程(法語:Équation de Poisson)是數學中一個常見於靜電學、機械工程和理論物理的偏微分方程式,因法國數學家、幾何學家及物理學家泊松而得名的。[1]
方程的叙述
泊松方程式為
在這裡 代表的是拉普拉斯算子,而 和 可以是在流形上的實數或複數值的方程式。當流形屬於歐幾里得空間,而拉普拉斯算子通常表示為 ,因此泊松方程通常寫成
在三維直角坐標系,可以寫成
如果有 恒等于0,這個方程式就會變成一个齐次方程,这个方程称作“拉普拉斯方程”。
泊松方程可以用格林函數來求解;如何利用格林函數來解泊松方程可以參考屏蔽泊松方程。現在也发展出很多種數值解,如松弛法(一种迭代法)。
数学表达
通常泊松方程式表示为
这里 代表拉普拉斯算子, 为已知函数,而 为未知函数。当 时,这个方程被称为拉普拉斯方程。
为了解泊松方程我们需要更多的信息,比如狄利克雷边界条件:
其中 为有界开集。
这种情况下利用基础函数构建泊松方程的解,拉普拉斯方程的基础函数为:
其中 为n维欧几里得空间中单位球面的体积,此时可通过卷积 得到 的解。
为了使方程满足上述边界条件,我们使用格林函数
为一个校正函数,它满足
通常情况下 是依赖于 。
通过 可以给出上述边界条件的解
其中 表示 上的曲面测度。
此方程的解也可通过变分法得到。
靜電學
在靜電學很容易遇到泊松方程。對於給定的f找出φ是一個很實際的問題,因為我們經常遇到給定電荷密度然後找出電位的問題。在國際單位制(SI)中:
此 代表電勢(單位為伏特), 是體電荷密度(單位為庫侖/立方公尺),而 是真空電容率(單位為法拉/公尺)。
如果空間中有某區域沒有帶電粒子,則
此方程式就變成拉普拉斯方程:
高斯電荷分佈的電場
如果有一個三維球對稱的高斯分佈電荷密度 :
此處,Q代表總電荷
此泊松方程式: 的解Φ(r)則為
erf(x)代表的是误差函数.
注意:如果r遠大於σ,erf(x)趨近於1,而電場Φ(r)趨近點電荷電場 ;正如我們所預期的。
參閱
参考文献
引用
- ^ Jackson, Julia A.; Mehl, James P.; Neuendorf, Klaus K. E. (编), Glossary of Geology, American Geological Institute, Springer: 503, 2005 [2015-05-30], ISBN 9780922152766, (原始内容存档于2020-11-20).
来源
- Poisson Equation (页面存档备份,存于互联网档案馆) at EqWorld: The World of Mathematical Equations.
- L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998. ISBN 0-8218-0772-2
- A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9.
外部链接
- Hazewinkel, Michiel (编), Poisson equation, 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4
- Poisson's equation (页面存档备份,存于互联网档案馆) on PlanetMath.