Smarandache–Wellin数
(重定向自斯馬蘭達克—威林數)
在數學中,Smarandache–Wellin数,是將前n個質數照順序寫在一起組成的新數,簡單的說就是將前n個質數照順序疊起來的数就是Smarandache–Wellin数。例如:第3個Smarandache–Wellin数,將前三個質數2、3、5寫在一起,等於235。例如:第6個Smarandache–Wellin数,將前六個質數2、3、5、7、11、13寫在一起,等於23571113。Smarandache–Wellin数名稱來自弗羅蘭廷·斯馬蘭達克和保羅·R·威林。
前幾個Smarandache–Wellin数為:
- 2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 2357111317192329, 235711131719232931, 23571113171923293137, 2357111317192329313741.........(OEIS數列A019518)
同時是質數的Smarandache–Wellin数稱為Smarandache–Wellin素數,目前共發現7個,第8個正等待證明(有可能是偽質數)。[1]
參見
參考文獻
- ^ Rivera, Carlos, Primes by Listing (页面存档备份,存于互联网档案馆)
- 埃里克·韦斯坦因. Smarandache–Wellin Number. MathWorld.
- Smarandache-Wellin number. PlanetMath.
- List of first 54 Smarandache–Wellin numbers with factorisations
- Smarandache–Wellin primes at The Prime Glossary(页面存档备份,存于互联网档案馆)
- Smith, S. "A Set of Conjectures on Smarandache Sequences." Bull. Pure Appl. Sci. 15E, 101–107, 1996.
这是一篇關於數的小作品。您可以通过编辑或修订扩充其内容。 |