有限差分係數
下表列出使用有限差分法进行数值微分时,各项的系数。按计算中自变量取值方向,分为中心差分,前向差分和后向差分。
中心差分
中心差分估算一阶至高阶微分按照下式:
其中 为自变量取等距格点计算函数值时的间隔。
下表列出不同计算精度下,等间距的一阶至高阶中心差分系数。[1]
阶次 | 精度 | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | −1/2 | 0 | 1/2 | ||||||
4 | 1/12 | −2/3 | 0 | 2/3 | −1/12 | |||||
6 | −1/60 | 3/20 | −3/4 | 0 | 3/4 | −3/20 | 1/60 | |||
8 | 1/280 | −4/105 | 1/5 | −4/5 | 0 | 4/5 | −1/5 | 4/105 | −1/280 | |
2 | 2 | 1 | −2 | 1 | ||||||
4 | −1/12 | 4/3 | −5/2 | 4/3 | −1/12 | |||||
6 | 1/90 | −3/20 | 3/2 | −49/18 | 3/2 | −3/20 | 1/90 | |||
8 | −1/560 | 8/315 | −1/5 | 8/5 | −205/72 | 8/5 | −1/5 | 8/315 | −1/560 | |
3 | 2 | −1/2 | 1 | 0 | −1 | 1/2 | ||||
4 | 1/8 | −1 | 13/8 | 0 | −13/8 | 1 | −1/8 | |||
6 | −7/240 | 3/10 | −169/120 | 61/30 | 0 | −61/30 | 169/120 | −3/10 | 7/240 | |
4 | 2 | 1 | −4 | 6 | −4 | 1 | ||||
4 | −1/6 | 2 | −13/2 | 28/3 | −13/2 | 2 | −1/6 | |||
6 | 7/240 | −2/5 | 169/60 | −122/15 | 91/8 | −122/15 | 169/60 | −2/5 | 7/240 | |
5 | 2 | −1/2 | 2 | −5/2 | 0 | 5/2 | −2 | 1/2 | ||
6 | 2 | 1 | −6 | 15 | −20 | 15 | −6 | 1 |
例如, 精度的三阶导的中心差分式为
前向与后向差分
下表列出不同精度下,等间距的一阶至高阶前向差分系数。[1]
阶次 | 精度 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | −1 | 1 | |||||||
2 | −3/2 | 2 | −1/2 | |||||||
3 | −11/6 | 3 | −3/2 | 1/3 | ||||||
4 | −25/12 | 4 | −3 | 4/3 | −1/4 | |||||
5 | −137/60 | 5 | −5 | 10/3 | −5/4 | 1/5 | ||||
6 | −49/20 | 6 | −15/2 | 20/3 | −15/4 | 6/5 | −1/6 | |||
2 | 1 | 1 | −2 | 1 | ||||||
2 | 2 | −5 | 4 | −1 | ||||||
3 | 35/12 | −26/3 | 19/2 | −14/3 | 11/12 | |||||
4 | 15/4 | −77/6 | 107/6 | −13 | 61/12 | −5/6 | ||||
5 | 203/45 | −87/5 | 117/4 | −254/9 | 33/2 | −27/5 | 137/180 | |||
6 | 469/90 | −223/10 | 879/20 | −949/18 | 41 | −201/10 | 1019/180 | −7/10 | ||
3 | 1 | −1 | 3 | −3 | 1 | |||||
2 | −5/2 | 9 | −12 | 7 | −3/2 | |||||
3 | −17/4 | 71/4 | −59/2 | 49/2 | −41/4 | 7/4 | ||||
4 | −49/8 | 29 | −461/8 | 62 | −307/8 | 13 | −15/8 | |||
5 | −967/120 | 638/15 | −3929/40 | 389/3 | −2545/24 | 268/5 | −1849/120 | 29/15 | ||
6 | −801/80 | 349/6 | −18353/120 | 2391/10 | −1457/6 | 4891/30 | −561/8 | 527/30 | −469/240 | |
4 | 1 | 1 | −4 | 6 | −4 | 1 | ||||
2 | 3 | −14 | 26 | −24 | 11 | −2 | ||||
3 | 35/6 | −31 | 137/2 | −242/3 | 107/2 | −19 | 17/6 | |||
4 | 28/3 | −111/2 | 142 | −1219/6 | 176 | −185/2 | 82/3 | −7/2 | ||
5 | 1069/80 | −1316/15 | 15289/60 | −2144/5 | 10993/24 | −4772/15 | 2803/20 | −536/15 | 967/240 |
例如, 精度一阶导的前向差分式为 For example, the first derivative with a third-order accuracy and the second derivative with a second-order accuracy are
精度二阶导的前向差分式为
对应的后向差分式分别为
实际上,奇数阶后向差分式相对前向差分,各系数q取相反数;而偶数阶的则不变。如下表:
阶次 | 精度 | −8 | −7 | −6 | −5 | −4 | −3 | −2 | −1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | −1 | 1 | |||||||
2 | 1/2 | −2 | 3/2 | |||||||
2 | 1 | 1 | −2 | 1 | ||||||
2 | −1 | 4 | −5 | 2 | ||||||
3 | 1 | −1 | 3 | −3 | 1 | |||||
2 | 3/2 | −7 | 12 | −9 | 5/2 | |||||
4 | 1 | 1 | −4 | 6 | −4 | 1 | ||||
2 | −2 | 11 | −24 | 26 | −14 | 3 |
参见
参考资料
- ^ 1.0 1.1 Fornberg, Bengt, Generation of Finite Difference Formulas on Arbitrarily Spaced Grids, Mathematics of Computation, 1988, 51 (184): 699–706, ISSN 0025-5718, doi:10.1090/S0025-5718-1988-0935077-0.