本德尔·邓恩多项式(Bender-Dunne polynomials)是一个正交多项式,定义如下:[1].
P 0 ( x ) = 1 {\displaystyle P_{0}(x)=1} ,
当 n > 1 {\displaystyle n>1} :
P [ 2 ] = x 2 + 32 ∗ s − 32 ∗ s ∗ J P [ 3 ] = x 3 + 160 ∗ x ∗ s − 96 ∗ x ∗ s ∗ J + 64 ∗ x − 32 ∗ x ∗ J P [ 4 ] = x 4 + 448 ∗ x 2 ∗ s − 192 ∗ x 2 ∗ s ∗ J + 352 ∗ x 2 − 128 ∗ x 2 ∗ J + 9216 ∗ s − 12288 ∗ s ∗ J + 9216 ∗ s 2 − 12288 ∗ s 2 ∗ J + 3072 ∗ s ∗ J 2 + 3072 ∗ s 2 ∗ J 2 . {\displaystyle {\begin{aligned}P[2]&=x^{2}+32*s-32*s*J\\P[3]&=x^{3}+160*x*s-96*x*s*J+64*x-32*x*J\\P[4]&=x^{4}+448*x^{2}*s-192*x^{2}*s*J+352*x^{2}-128*x^{2}*J+9216*s-12288*s*J+9216*s^{2}-12288*s^{2}*J+3072*s*J^{2}+3072*s^{2}*J^{2}.\end{aligned}}}