条件概率分布

機率論中的概念
(重定向自条件分布

条件概率分布Conditional Probability Distribution,或者 条件分布Conditional Distribution )是现代概率论中的概念。已知两个相关的随机变量XY,随机变量Y 在条件{X =x}下的条件概率分布是指当已知X 的取值为某个特定值x之时,Y概率分布。 如果Y 在条件{X =x}下的条件概率分布是连续分布,那么其密度函数称作Y 在条件{X =x}下的条件概率密度函数条件分布密度条件密度函数)。与条件分布有关的概念,常常以“条件”作为前缀,如条件期望条件方差等等。

例子

 
如果骰子一侧是6点,朝上的可能是4点,但不可能是6点或1点。

假设在桌子上抛掷一枚普通的骰子,则其点数结果的概率分布是集合 均匀分布:每个点数出现的概率都是均等的六分之一。然而,如果据某个坐在桌边的人观察,向着他的侧面是6点,那么,在此条件下,向上的一面不可能是6点,也不可能是6点对面的1点。因此,在此条件下,抛骰子的点数结果是集合 的均匀分布:有四分之一的可能性出现 四种点数中的一种。可以看出,增加的条件或信息量(某个侧面是6点)导致了点数结果的概率分布的变化。这个新的概率分布就是条件概率分布。

数学定义

更为严格清晰的定义需要用到数学语言。当随机变量是离散或连续时,条件概率分布有不同的表达方法。

离散条件分布

对于离散型的随机变量XY(取值范围分别是  ),随机变量Y 在条件{X =x}下的条件概率分布是:

  

同样的,X 在条件{Y=y}下的条件概率分布是:

  

其中, XY 联合分布概率,即“ ,并且 发生的概率”。如果用 表示 的值:   那么随机变量XY边际分布就是:

 
 

因此, 随机变量Y 在条件{X =x}下的条件概率分布也可以表达为:

  

同样的,X 在条件{Y=y}下的条件概率分布也可以表达为:

  

连续条件分布

对于连续型的随机变量XY ,因此对离散型随机变量的条件分布定义不适用。假设其联合密度函数为 XY 的边际密度函数分别是  ,那么Y 在条件{X =x}下的条件概率密度函数是:

 

同样的,X 在条件{Y=y}下的条件概率密度函数是:

 

条件分布和独立分布

在一定意义上,条件分布和独立分布是相对的。如果两个随机变量XY 是独立分布的,那么不论是否已知某个关于X 的条件,都不会影响Y 的概率分布。用数学语言来说,就是:

 

这与独立分布的定义是相合的,事实上,随机变量XY 相互独立分布,则:

 

因此

 

参见

参考资料

  • 赵衡秀. 《概率论与数理统计》. 清华大学出版社. 2005.