活度系数

(重定向自活性係數

活性係數英語:Activity coefficient),又称活性因子英語:Activity factor),是热力学中的一个系数,反映的是真实溶液中某组分i的行为偏离理想溶液的程度[1],量纲为1。引入活性系数后,适用于理想溶液的各种关系可以相应修正为适用于真实溶液。类似的,逸度系数是表示真实气体混合物中某组分和理想行为的偏离的系数。

定义

在理想溶液中,溶液组分i遵循拉乌尔定律

 

其中 是组分i在溶液中的摩尔分数  分别是组分i的分压和饱和蒸气压。 而组分i的化学势 可由下式表达:

 

这里的 代表组分i在标准状态下的化学势。而在真实溶液中,组分i-组分i间的作用力和组分i-其他组分间的作用力并不相等,导致了组分i并不满足拉乌尔定律,其化学势也不满足以上关系,即偏离了理想溶液的行为,为此吉尔伯特·牛顿·路易斯引入了活性和活性系数的概念。 定义:

 

这里的 是组分i以摩尔分数所表示的活性 则是组分i用摩尔分数所表示的活性系数。引入活性和活性系数后,拉乌尔定律可以修正为:

 

组分i的化学势则可以修正為:

 

真实溶液的浓度越稀,溶剂的活性系数就越接近1,活性和摩尔分数近乎相等,其行为越接近理想溶液。浓度越高,活性系数越偏离1,真实溶液的行为偏差理想溶液就越大,比如对于浓度较高的电解质溶液,其活性就无法用摩尔分数取代,这一点在电化学土壤化学中十分常见[2]

平衡常数的修正

当化学反应: 达到化学平衡时,反应物化学势的和等于生成物化学势的和,反应的吉布斯能变化 为0,即:

 

将每种物质用活性所表示的化学势表达式代入其中得到

 
 

其中的  是反应在标准状况下的吉布斯能变化  于是

 

此时的平衡常数由平时的 修正为:

 

活性系数的测量和计算方法

活性系数可以通过实验测量和理论计算结合的方法求出,常见方法有蒸气压法、德拜-休克尔极限公式法、图解积分法和测量电动势法等:

蒸汽压法

引入活性系数后,拉乌尔定律修正为:

 

可通过测定某一浓度下溶液蒸汽压和饱和蒸汽压的比值,除以其摩尔分数,即为活性系数。

德拜-休克尔极限公式法

德拜-休克尔极限公式给出了某种离子i的活性系数和离子强度的关系:

 [3]

其中 是离子所带的电荷数, 是溶液中的离子强度, 是和溶剂有关的常数。 但德拜-休克尔极限公式只适用于稀溶液,对于较高浓度的电解质溶液,需要使用戴维斯公式[4]pitzer公式[5]等修正后的方法。

图解积分法

对于双组分溶液,根据吉布斯-杜安方程,於恆壓P和恆溫T下

 

根据用活性系数表示的化学势

 

可得

 

代入吉布斯-杜亥姆方程:

 

注意到

 

所以

 

这样,在已知其中一种组分的活性系数之后,可以通过积分求出另一种活性系数[6],或用这一关系检验所测得的活性系数数值是否具有热力学一致性。

相關條目

参考文献

  1. ^ 國際純化學和應用化學聯合會化學術語概略,第二版。(金皮書)(1997)。在線校正版: (2006–) "Activity coefficient"。doi:10.1351/goldbook.A00116
  2. ^ Jorge G. Ibanez; Margarita Hernandez-Esparza, Carmen Doria-Serrano, Mono Mohan Singh. Environmental Chemistry: Fundamentals. Springer. 2007. ISBN 978-0-387-26061-7. 
  3. ^ 傅献彩等. 物理化学(下) 第五版. 高等教育出版社. 2005年7月: 37页. 
  4. ^ C.W. Davies, Ion Association,Butterworths, 1962
  5. ^ I. Grenthe and H. Wanner, Guidelines for the extrapolation to zero ionic strength, http://www.nea.fr/html/dbtdb/guidelines/tdb2.pdf页面存档备份,存于互联网档案馆
  6. ^ 傅献彩等. 物理化学(上) 第五版. 高等教育出版社. 2005年7月: 251页.