熱物理學

熱物理學是一門關於物質內熱力的傳送及儲存的研究

遙距測量

熱物理學地理物理學的分支。它利用大自然存在的表面溫度來檢測太陽輻射的環帶變化,以此得到星球的物理特性。

熱物理學的特性決定了物質溫度每天的,季節性的及氣候性的變化。最重要的特性是熱力慣性,它控制了熱力曲線的幅度,而反照率則掌管了平均溫度。

這樣的技術首次應用於火星的測量,因為火星的大氣壓力對於微小物質的測量十分理想。[1]水手6號水手7號水手9號帶著熱紅內線測量器能夠為火星上的某些指定地方製作熱特性的地圖,[2],並且根據維京一號及兩個軌道探測船上紅外線熱感製圖儀器所得到的表面溫度模型來繪製熱力慣性地圖[3]

原來的熱物理學模型建基於1948年威斯林克(Wesselink)及1953年積架對月亮溫度變化的研究。為火星建立的模型包括了表面大氣層能量傳送,[Leovy, 1966]大氣回輻射[Neugebauer et al., 1971],表面發射率變化[Kieffer et al., 1973],二氧化碳冷凍及塊狀表面[Kieffer et al., 1977],大氣回輻射變化[Haberle and Jakosky, 1991],發熱對流大氣層的影響[Hayashi et al., 1995]及單點溫度觀測[Jakosky et al., 2000; Mellon et al., 2000]。

参考文献

  1. ^ Wechsler and Glaser, 1965
  2. ^ Neugebauer, et al., 1971; Kieffer et al., 1973
  3. ^ Kieffer, et al., 1977

其他文獻

  1. Wechsler, A.E., and P.E. Glaser, Pressure Effects on Postulated Lunar Materials. Icarus, Vol. 4, 335, 1965.
  2. Neugebauer, G., G. Munch, H.H. Kieffer, S.C. Chase, and E. Miner, Mariner 1969 Infrared Radiometer Results: Temperatures and Thermal Properties of the Martian Surface. Astronomical Journal, Vol. 76, 719, 1971.
  3. Kieffer, H.H., S.C. Chase, E. Miner, G. Munch, and G Neugebauer, Preliminary Report on Infrared Radiometric Measurements from the Mariner 9 Spacecraft. J. Geophys. Res., 78, 4291-4312, 1973.
  4. Kieffer, H.H., T.Z. Martin, A.R. Peterfreund, B.M. Jakosky, E.D. Miner, and F.D. Palluconi, Thermal and Albedo Mapping of Mars During the Viking Primary Mission. J. Geophys. Res., Vol. 82, No. 28, 4249-4290, 1977.
  5. Wesselink, A.J., Heat conductivity and nature of the lunar surface material. Bull. Astron. Inst. Neth., Vol. 10, 351-363, 1948.
  6. Jaeger, J.C., The Surface Temperature of the Moon., Australian Journal of Physics, vol. 6, p.10, 1953.
  7. Leovy, C., Note on the thermal properties of Mars., Icarus, 5, 1-6, 1966.
  8. Haberle, R.M., and B.M. Jakosky, Atmospheric effects on the remote determination of thermal inertia on Mars. Icarus, 90, 187-204, 1991.
  9. Hayashi, J.N., B.M. Jakosky, and R.M. Haberle, Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo. J. Geophys. Res. Vol. 100, E3, 5277-5284, 1995.
  10. Jakosky, B.M., M.T. Mellon, H.H. Kieffer, P.R. Christensen, E.S. Varnes, and S.W. Lee, The Thermal Inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer. J. Geophys. Res., 105, 9643-9652, 2000.
  11. Mellon, M.T, B.M. Jakosky, H.H. Kieffer, and P.R. Christensen, High Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus, 148, 437-455, 2000.