制冷剂

(重定向自雪種

冷媒(refrigerant)又稱冷媒致冷劑[1]冷冻剂[2]雪种,是各种热机中借以完成能量转化的媒介物质。这些物质通常以可逆的相变(如气-液相变)来增大功率。如蒸汽引擎中的蒸汽製冷机中的雪种等等。一般的蒸汽机在工作时,将蒸汽的热能释放出来,转化为机械能以产生原动力;而制冷机的雪种则用来將低温处的热量传动到高温处。

传统工业及生活中较常见的工作介质是部分卤代烃(尤其是氯氟烃),但现在由于它们會造成臭氧层空洞而逐渐被淘汰。其他应用较广的工作介质有氨气二氧化硫和非卤代烃(例如甲烷[3]

性质

物理性质

理想的工作介质具有良好的热力学性能、具有化学惰性、安全环保且易于获取。所应满足的热力学性质条件有:沸点稍低于目标温度、具有较高汽化热、处于液态时密度中等、气态时的其相对密度较高、且需有较高的临界温度。由于沸点和气体密度与压强有关,一般要根据特定的运行压强选择合适的工质。现在满足这些条件的、性能优异的工作介质主要是氯氟烃。

化学性质

工质材料的腐蚀性和机械部件(如压缩机管道蒸发器冷凝器)使用材料及潤滑油之間的相容性有關,例如使用工作介質時,潤滑油需使用礦物油,而使用工作介質時,潤滑油需使用合成润滑油。在安全方面,则需要考虑到工质是否具有毒性可燃性

历史

在1980年代出現臭氧层空洞问题之前,世界上最广泛应用的工质是卤代甲烷——二氟二氯甲烷(R-12)及一氯二氟甲烷(R-22)。R-12较常运用于汽车空调和小型冰箱上,而R-22较常运用于住宅空调和轻型商用空调、冰箱和冷冻机上。一些较老的系统中还运用了三氯氟甲烷(R-11),因为它具有较高的沸点,可以配合低压系统使用,减轻了系统所需的组件的机械强度。不過因為氟氯碳化合物會造成臭氧层空洞問題,1987年簽署的蒙特婁議定書中規定減少及限制氟氯碳化物的生產。美国于1995年停止生产新的R-12,且已計劃于2020年淘汰R-22。

1,1,1,2-四氟乙烷(R-134a)及其他不含氯的混合物工作介質正在取代氯代烃。一种常用來取代R-22的混合物工作介質称为R-410A,是由二氟甲烷(R-32)与五氟乙烷(R-125)以1:1的比例混合的近共沸混合物。R-410A通常在市场上以商品名“Puron”销售。另一种常见的混合物工质是R-407C,由R-32、R-125及R-134a混合而成,其臨界溫度較R-410A高,且全球暖化潛勢(GWP)較R-410A低,當其他會破壞臭氧層的工质淘汰後,上述的工质仍可以正常販售。

氯氟碳化物(CFC)及氫氯氟碳化物(HCFC)被禁用之後,可以用碳氟化合物(FC)及氫氟碳化物(HFC)取代上述工作介質。不過新的工作介質屬於溫室氣體,會使溫室效應增強,促進全球暖化,近來也在討論是否要限制或禁用這些工作介質。在1997年12月制定的京都議定書已將全氟碳化物及氫氟碳化物列入溫室氣體,歐盟也在2006年通過法律,限制全氟化碳及氫氟碳化物的使用,以減少溫室氣體的排放時。非溫室氣體的工作介質不在管制範圍內。

早期的機械冷凍系統會以二氧化硫為其工作介質,二氧化硫主要使用在小型的家用冷凍系統中,不過由於其毒性,後來就被氯氟碳化物所取代。氨(R717)是一種不會破壞環境、經濟而且省能的工作介質,應用在工業冷凍系統已超過130年。而二氧化碳(R744)和氨一樣,很早應用在冷凍系統中。[4]一些很早期的機器還使用其他傳統的工作介質,如甲酸甲酯氯甲烷二氯甲烷等。

高純度的丙烷由於性質和R-22相近,而且無毒,但極易燃,也可以作為工作介質使用。丙烷工作介質會加入痕量的乙硫醇,可讓人及早注意到工作介質的泄漏。

应用

天然的工作介質(如氨、二氧化碳及非鹵代烴)不會破壞臭氧層,其全球暖化潛勢為0(氨)或相當很低的值[5]。這些工作介質常用在大樓的空調系統、體育及休閒設施、化工業及製藥業、汽車工業中,最重要的是應用在食品工業中,包括在製造、儲存及零售的過程。也有新的應用開始使用天然工作介質,例如車用空調。

因為車用空調工作介質的排放影響全球氣候,此議題已逐漸受到重視。歐盟自2011年起已禁止在汽車空調系統中使用全球暖化潛勢超過150的工作介質。此措施禁止了一些高全球暖化潛勢的溫室氣體,如GWP值為1410的工作介質,鼓勵改用其他安全、省能的工作介質。

其中天然工作介質二氧化碳(R-744)是其中最有潛力的方案之一。二氧化碳不可燃,不會破壞臭氧層,其全球暖化潛勢為1,不過有毒,在體積濃度超過5%時足以致命。R-744可以用作車用空調、住宅空調、热水泵、商用空調、自動販賣機中的工作介質[6][7]二甲醚也可以作為工作介質使用[8]

HFO-1234yf(2,3,3,3-四氟丙烯)是一種部份氫原子被氟取代的烯烴,其GWP值只有4,非混合物,也是可取代R-134a的工作介質之一[9]。通用汽车公司已宣佈自2013年起開始在所有品牌的汽車中使用HFO-1234yf[10]

处理

由于氟氯烃一类的工作介质會对臭氧层產生严重破坏,从1992年7月1日开始,有意或无意地將这些物质释放到大气中都会被视为违法行为。當氟氯烃在被淘汰后,必须回收以除去杂质并使其回到可再次使用的状态。这类工作介质也被禁止随意混用。部分氟氯烃在回收后仍为危险品,在运输等过程中需根据当地政府的相关法令进行特殊的防护。

类别

工质依其從待冷卻物體中吸收熱的方式不同,可分為以下幾種:

  • Class 1:此種工作介質是利用相變化(最常見的是沸騰)來吸收熱,吸收的熱能變成工作介質的潛熱
  • Class 2:此種工作介質是利用溫度變化(可感热量)來吸收熱,可吸收的熱為熱容量和溫度變化量的乘積,此種工作介質包括空氣、氯化鈣水溶液、氯化鈉水溶液、酒精等。

R-# 編號系統是由杜邦公司所開發,可以系統化的識別由飽和鹵化烴組成工作介質的分子結構,其編號意義如下:

  • 將其編號加90,可以得到三位數,各個位數分別表示分子中的原子個數[11]
  • 由碳的個數可以其飽和鹵化烴的單鍵個數,扣掉氫及氟原子個數後,剩下的就是原子的個數。
  • 編號後附加的小寫a,b,c字母是用來識別非對稱的同分異構物
  • R-400及R-500系列是特別用來標示混合物的工作介質。R-400是由非共沸英语zeotropic(zeotropic)的混合物組成,其成份的沸點差距較大,在分餾時其相對濃度會隨溫度而變。R-500則是共沸的的混合物所組成。最小的位數是由美國冷凍空調協會英语ASHRAE(ASHRAE)所指定。

例如,R-134a有四個氟原子、二個氫原子和二個碳原子,其化學式是C2H2F4,字尾的a表示是差一個原子的非對稱的異構物,因此是1,1,1,2-四氟乙烷。字尾沒有a的R-134對應的化合物是1,1,2,2-四氟乙烷,不過其特性不適合當作工作介質使用。

R-# 編號系統的數字也常用在其他的場合,像作用噴霧設備(香水、殺蟲劑等)的分散劑時前面會加P-(如P-12),也可以配合商品名稱(如Freon 12)。由於工作介質會依其種類不同,所受到的管制也有不同,最近也會在工作介質前面加上其種類的簡稱,如HFC-表示是氫氟碳化物、加CFC-表示是氯氟碳化物、加HCFC-表示是氫氯氟碳化物。

混合物

  • R-401A 是非共沸的HCFC混合物,成份包括R-32R-152a、及R-124。此工作介質是為取代R-12而設計[12]
  • R-404A 是近共沸的HFC混合物,成份包括重量比例52%的R-143a、44%的R-125及4%的R-134a。此工作介質是為取代氟氯碳化合物工作介質R-22及502所設計。其一般壓力下的沸點是-46.5 °C,液態的密度為0.485 g/cm3[13]
  • R-406A 是非共沸混合物,成份包括重量比例52%的R-22、4%的R-600a(異丁烷)及41%的R-142b
  • R-407A 是非共沸的HCFC混合物,成份包括重量比例20%的R-32、40%的R-125及40%的R-134a[14]
  • R-407C 是非共沸的HCFC混合物,成份包括R-32、R-125、及R-134a。R-32增加熱容、R-125減少可燃性、R-134a減少所需的壓力[15]
  • R-408A 是非共沸的HCFC混合物,成份包括R-22、R-125及R-143a。可以替代R-502。其沸點為-44.4 °C[16]
  • R-409A 是非共沸的HCFC混合物,成份包括R-22、R-124及R-142b,其臨界溫度為109.4 °C[17]
  • R-410A是由R-32及R-125組成的近共沸的HFC混合物。美國環境保護局認為R-410可以替代R-22在家庭及商用空調中的應用。[18]
  • R-466A是共沸混合物,成份包括R-32、R-125及三氟碘甲烷
  • R-500 是共沸混合物,成份包括重量比例73.8%的R-12及26.2%的R-152a。
  • R-502 是共沸混合物,成份包括R-22及R-115

空气工作介质

空氣工作介質已應用在住宅[19]、車輛[20]、及以渦輪飛機的空調及(或)冷卻系統中。空氣工作介質沒有廣為使用的原因,是因為一般認為空氣作為工作介質時效率很低,不是可以實際使用的工作介質[21]

不過配合適當的壓縮及膨脹技術,可以提昇空氣工作介質的效率,這種情形下空氣就是可以實際使用的工作介質。空氣工作介質的優點是不會污染或破壞環境,對動植物的可能傷害非常的小(現有的空氣冷卻方式會把微量的油或潤滑劑排放到大氣中)。

参见

参考文献

  1. ^ https://terms.naer.edu.tw/detail/e1f06582ef5f37a9f044584edcddedae/
  2. ^ 存档副本. [2024-02-26]. (原始内容存档于2024-02-26). 
  3. ^ Siegfried Haaf, Helmut Henrici “Refrigeration Technology” in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, {{DOI:10.1002/14356007.b03_19}}
  4. ^ eurammon information paper No 1 (PDF). [2010-07-18]. (原始内容 (PDF)存档于2011-07-10) (英语). 
  5. ^ www.eurammon.com. [2010-07-18]. (原始内容存档于2011-07-10) (英语). 
  6. ^ CO2 as a refrigerant in different applications. [2010-07-18]. (原始内容存档于2010-07-15). 
  7. ^ http://www.hvac-net.org.tw/archive/files/83-s3.pdf页面存档备份,存于互联网档案馆) 二氧化碳冷媒應用現況介紹
  8. ^ 存档副本 (PDF). [2012-03-14]. (原始内容 (PDF)存档于2012-03-14).  101110
  9. ^ A/C Update: The Future of Cool. [2010-11-26]. (原始内容存档于2011-07-17). 
  10. ^ GM First to Market Greenhouse Gas-Friendly Air Conditioning Refrigerant in U.S.. [2010-11-26]. (原始内容存档于2012-03-17). 
  11. ^ 存档副本. [2010-07-18]. (原始内容存档于2015-12-29). 
  12. ^ HCFC - R401A. [2010-07-18]. (原始内容存档于2003-12-14). 
  13. ^ http://cameochemicals.noaa.gov/chemical/26023页面存档备份,存于互联网档案馆) Refrigerant gas R-404A
  14. ^ http://cameochemicals.noaa.gov/chemical/26024页面存档备份,存于互联网档案馆) Refrigerant gas R-407A
  15. ^ 存档副本. [2010-11-16]. (原始内容存档于2011-07-18). 
  16. ^ Mixed refrigerants, R-408A page. [2010-07-18]. (原始内容存档于2006-11-26). 
  17. ^ Mixed refrigerants, R-409A page. [2010-07-18]. (原始内容存档于2006-11-26). 
  18. ^ 存档副本. [2015-12-25]. (原始内容存档于2002-06-01). 
  19. ^ Air as a refrigerant in air conditioning systems in buildings页面存档备份,存于互联网档案馆).
  20. ^ The Air Cycle Machine页面存档备份,存于互联网档案馆) compressor technology.
  21. ^ [Is air an inefficient refrigerant?]

外部链接