亨斯托克-考兹维尔积分

(重定向自Henstock–Kurzweil积分

数学中,亨斯托克-考兹维尔积分(英語:Henstock–Kurzweil integral,也称为卢津积分佩龙积分,有时为了和广义当茹瓦积分区别而称为当茹瓦积分)是黎曼积分的一种推广,有些情况下比勒贝格积分更加宽泛。

亨斯托克-考兹维尔积分最早是由二十世纪初法国数学家阿尔诺·当茹瓦英语Arnaud Denjoy引进的。当茹瓦在研究形似:

的函数的时候,希望能够为它们定义积分。这种函数往往在某一点附近无法定义黎曼积分,但是用类似极限定义的 ε − δ 方法又能够定义出类似黎曼积分的极限。

为了给这类函数定义积分,当茹瓦将黎曼不可积的点分为若干种情形,分别用超限归纳法来定义积分。这样的定义繁复冗长。 尼古拉·卢津使用类似绝对连续的方式给出了另一种等价定义;奥斯卡·佩龙也给出了一种等价的定义,但这个等价关系并不显然。

1957年,捷克数学家雅罗斯拉夫·考兹维尔英语Jaroslav Kurzweil给出了一种比较优雅的定义,和黎曼积分的定义比较相似。考兹维尔称之为“刻度积分”(Gauge Integral)。而拉尔夫·亨斯托克英语Ralph Henstock则发展并完善了这种积分理论。基于这两位数学家的贡献,现今一般将这种积分称为亨斯托克-考兹维尔积分。由于考兹维尔的定义和黎曼积分的定义同样简洁,有的数学教育者认为可以在教学中用亨斯托克-考兹维尔积分代替黎曼积分,但这个主张并未被广泛采纳。

定义

这里只给出亨斯托克的定义:

区间分割与刻度

给定一个取样分割P 和一个正函数 (所谓的“刻度”),如果

 

就称这个分割是一个δ-精细分割。[1]

黎曼和

对一个在闭区间 有定义的实值函数  关于取样分割P  黎曼和定义为以下和式:

 

和式中的每一项是子区间长度 与在 处的函数值 的乘积。直观地说,就是以标记点 上的函数值 到X轴的距离为高,以分割的子区间为长的矩形的面积。[1]

亨斯托克-考兹维尔积分

 是函数 在闭区间 上的亨斯托克-考兹维尔积分,当且仅当对于任意的 ,都存在刻度函数 ,使得对于任意的取样分割P  ,只要P是δ-精细分割,就有:

 [1]

从定义中可以看出,亨斯托克-考兹维尔积分比黎曼积分更加注重区间上的取样。黎曼积分中,只将分割的小区间的最大长度作为精细度的标准。亨斯托克-考兹维尔积分的定义中引入“刻度”函数,并将取样值和刻度函数联系起来,定义分割的精细程度。如果将刻度函数δ设定为常值函数,那么亨斯托克-考兹维尔积分就退化为黎曼积分。[1]

δ-精细分割的存在性

如果对某些刻度函数δ,δ-精细分割不存在,那么定义中“只要P是δ-精细分割,就有”一句就会变成一个前件全真的判断,从而失去应有的意义。Cousin定理英语Cousin's theorem说明,对任意的刻度函数δ,必定存在δ-精细分割,杜绝了亨斯托克-考兹维尔积分定义逻辑上可能存在的瑕疵[1]

积分的唯一性

为了能够良好地定义积分,亨斯托克-考兹维尔积分的定义中的S必须是唯一存在的,同一个函数在同一个区间上不能有两个不同的积分值。可以证明,亨斯托克-考兹维尔积分如果存在就必定是唯一的。这说明亨斯托克-考兹维尔积分是良好定义的。[1]

参见

参考来源

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 Bartle, Robert G. A Modern Theory of Integration. Graduate Studies in Mathematics 32. American Mathematical Society. 2001. ISBN 978-0-8218-0845-0 (英语).