File:Abu Reyhan Biruni-Earth Circumference.svg

原始檔案 (SVG 檔案,表面大小:1,000 × 900 像素,檔案大小:16 KB)


摘要

描述
English: Biruni (973 - 1048) developed a new method using trigonometric calculations to compute earth's radius and circumference based on the angle between the horizontal line and true horizon from a mountain top with known height. He calculated the height of the mountain by going to two points at sea level with a known distance apart and then measuring the angle between the plain and the top of the mountain for both points.

Biruni's estimate of 6,339.9 km for the Earth radius had an error of 0.0026 and was 16.8 km less than the current value of 6,356.7 km. The idea came to him when he was on top of a tall mountain near Nandana in Pakistan. He measured the dip angle using an astrolabe and he applied to the law of sines formula. He also made use of algebra in his calculation.

  • A = Highest point of mountain
  • B = Lowest point of mountain
  • h = Height of the mountain
  • C = Lowest point of true horizon visible from point A
  • O = Centre of Earth
  • α = Dip angle
  • r = Earth's radius

Solution:
The angle AOC = α.
AO=(r+h) is the hypotenuse in triangle AOC.
r=(r+h)·cos(α)
Then the right side can be simplified to find r.

r=h·cos(α)/(1-cos(α))


Français : Biruni (973-1048) développa une nouvelle méthode utilisant la trigonométrie pour calculer le rayon et la ciconférence de la Terre, basée sur l'angle entre la ligne horizontale et l'horizon réel depuis le sommet d'une montagne de hauteur connue. Il calcula la hauteur de la montagne en se rendant en deux points situés au niveau de la mer dont l'écartement était connu, puis en mesurant l'angle entre la ligne horizontale formée par les deux points au niveau de la mer et le sommet de la montagne, et ceci depuis chacun des deux points.

L'estimation de Biruni de 6 339,9 km pour le rayon de la Terre comportait une erreur de 0,26 %, soit une valeur inférieure de 16,8 km par rapport à la valeur actuelle de 6 356,7 km. L'idée lui était venue alors qu'il se trouvait au sommet d'une haute montagne, près de Nandana en Inde. Il mesura l'angle d'incinaison avec un astrolabe et il appliqua la formule des sinus. Il fit également usage de l'algèbre pour ses calculs.

  • A = point culminant de la montagne
  • B = point le plus bas de la montagne
  • h = hauteur de la montagne
  • C = point le plus bas de l'horizon vrai visible du point A
  • O = Centre de la Terre
  • α = angle d'inclinaison
  • r = rayon de la Terre

Solution :
L'angle AOC = α.
AO=(r+h) est l'hypothénuse du triangle AOC.
r=(r+h)·cos(α)
Puis le côté droit se simplifie pour trouver r.

r=h·cos(α)/(1-cos(α))


日期
來源 自己的作品 Using Geogebra and Inkscape
作者 Nevit Dilmen
SVG開發
InfoField
 
SVG檔案的原始碼通過W3C驗證
 
向量圖形使用Inkscape創作。
 
以及使用 GeoGebra.
 
 這個SVG 檔案使用了內置文字,可以使用任何文字編輯器輕鬆翻譯

授權條款

我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
w:zh:創用CC
姓名標示 相同方式分享
您可以自由:
  • 分享 – 複製、發佈和傳播本作品
  • 重新修改 – 創作演繹作品
惟需遵照下列條件:
  • 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
  • 相同方式分享 – 如果您利用本素材進行再混合、轉換或創作,您必須基於如同原先的相同或兼容的條款,來分布您的貢獻成品。

說明

添加單行說明來描述出檔案所代表的內容

在此檔案描寫的項目

描繪內容

檔案來源 Chinese (Taiwan) (已轉換拼寫)

image/svg+xml

4dd53114d5cd203e9b0011067229c31d0c5ea202

斷定方法:​SHA-1 中文 (已轉換拼寫)

16,607 位元組

900 像素

1,000 像素

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸使用者備⁠註
目前2010年5月2日 (日) 05:25於 2010年5月2日 (日) 05:25 版本的縮圖1,000 × 900(16 KB)NevitCrop
2010年5月2日 (日) 05:21於 2010年5月2日 (日) 05:21 版本的縮圖1,390 × 1,220(16 KB)NevitYellow removed
2010年5月2日 (日) 05:19於 2010年5月2日 (日) 05:19 版本的縮圖1,390 × 1,220(16 KB)NevitImage version
2010年5月2日 (日) 05:18於 2010年5月2日 (日) 05:18 版本的縮圖640 × 480(22 KB)Nevit{{Information |Description={{en|1=Biruni (973 - 1048) developed a new method using trigonometric calculations to compute earth's circumference based on the angle between the horizontal line and true horizon from a mountain top with known height. He calcu

下列頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案:

檢視此檔案的更多全域使用狀況

詮釋資料