3,4-環氧環己基甲基-3,4-環氧環己基甲酸酯

化合物

3,4-環氧環己基甲基-3,4-環氧環己基甲酸酯3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylateECC)是一種環脂族環氧樹脂,可用於多種工業用途。它通過陽離子聚合反應,使用熱致光引發劑形成交聯的不溶性熱固性聚合物。眾所周知,基於環脂族環氧樹脂(如 ECC)的配方可通過固化形成具有高耐熱性、耐化學性和良好粘合性的熱固性塑料。[2]

3,4-環氧環己基甲基-3,4-環氧環己基甲酸酯
識別
縮寫 ECC
CAS號 2386-87-0  checkY
PubChem 16949
ChemSpider 16058
SMILES
 
  • C1CC2C(O2)CC1COC(=O)C3CCC4C(C3)O4
性質
化學式 C14H20O4
摩爾質量 252.31 g·mol−1
外觀 無色液體[1]
密度 1.17 g·cm−3[1]
熔點 −37 °C(−35 °F;236 K)[1]
溶解性 13.85 g·l−1(20 °C)[1]
若非註明,所有數據均出自標準狀態(25 ℃,100 kPa)下。

歷史

ECC 的均聚是以輻射固化為基礎,通過光化學作用形成超強酸,然後進行陽離子聚合,於20世紀70年代首次實現的。[3]

製造

ECC 可通過四氫苯甲醛季先科反應以及隨後與過酸環氧化反應製備。[4]

特性

ECC在25 ℃時的動態粘度為400 mPa·s。[2]

反應性

在ECC的均聚過程中,需要添加1.5~3 wt%的引發劑。3 wt%以上的引發劑不會進一步加速反應,但引發劑比例的增加會增加所形成的熱固性塑料的脆性。在光聚合之後,通常還需要進行熱後固化,才能完全反應。[5]

這種單體的反應活性低於其可能達到的水平,因為所含的酯基會與活性聚合鏈端發生反應並穩定。因此,它的反應速度明顯慢於其他不含酯基的分子。[2][6]ECC的聚合速度也比自由基單體慢得多。因此,研究的目標是找到聚合速度更快但性能相同的陽離子可聚合單體。[2]

交聯

陽離子交聯ECC具有低粘度、優異的電氣性能和高可靠性等特點,可用作絕緣體鍍膜、粘合劑或印刷油墨,廣泛應用於各種工業領域。[7]然而,均聚ECC極易變脆,要解決這個問題,可以在環氧樹脂基體中加入橡膠或矽樹脂等彈性體顆粒、加入無機填料[8],或在聚酯多元醇[9]的作用下通過聚合作用進行塑化。聚酯多元醇通過單體活化機制與聚合物網絡共價結合。[10]

參考

  1. ^ 1.0 1.1 1.2 1.3 Record of 3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat in the GESTIS Substance Database from the IFA英語Institute for Occupational Safety and Health, accessed on 1 January 2015
  2. ^ 2.0 2.1 2.2 2.3 Sasaki, Hiroshi. Curing properties of cycloaliphatic epoxy derivatives. Progress in Organic Coatings. February 2007, 58 (2–3): 227–230. doi:10.1016/j.porgcoat.2006.09.030. 
  3. ^ Crivello, J. V.; Lam, J. H. W. Dye-sensitized photoinitiated cationic polymerization. Journal of Polymer Science: Polymer Chemistry Edition. October 1978, 16 (10): 2441–2451. Bibcode:1978JPoSA..16.2441C. doi:10.1002/pol.1978.170161004. 
  4. ^ Dillman, Brian; Jessop, Julie L. P. Chain transfer agents in cationic photopolymerization of a bis-cycloaliphatic epoxide monomer: Kinetic and physical property effects. Journal of Polymer Science Part A: Polymer Chemistry. 2013-05-01, 51 (9): 2058–2067. Bibcode:2013JPoSA..51.2058D. doi:10.1002/pola.26595. 
  5. ^ Atsushi Udagawa; Yasuhiko Yamamoto; Yoshio Inoue; Riichirô Chûjô. Dynamic mechanical properties of cycloaliphatic epoxy resins cured by ultra-violet- and heat-initiated cationic polymerizations. Polymer. January 1991, 32 (15): 2779–2784. doi:10.1016/0032-3861(91)90108-U. 
  6. ^ Crivello, James V.; Varlemann, Ulrike. Mechanistic study of the reactivity of 3,4-epoxycyclohexylmethyl 3′,4′-epoxycyclohexancarboxylate in photoinitiated cationic polymerizations. Journal of Polymer Science Part A: Polymer Chemistry. October 1995, 33 (14): 2473–2486. doi:10.1002/pola.1995.080331421. 
  7. ^ Cristina Mas; Ana Mantecón; Angels Serra; Xavier Ramis & Josep Maria Salla. Improved thermosets obtained from cycloaliphatic epoxy resins and γ-butyrolactone with lanthanide triflates as initiators. I. Study of curing by differential scanning calorimetry and Fourier transform infrared. Journal of Polymer Science Part A: Polymer Chemistry. 2005-06-01, 43 (11): 2337–2347. Bibcode:2005JPoSA..43.2337M. doi:10.1002/pola.20711. 
  8. ^ Lützen, Hendrik; Bitomsky, Peter; Rezwan, Kurosch; Hartwig, Andreas. Partially crystalline polyols lead to morphology changes and improved mechanical properties of cationically polymerized epoxy resins. European Polymer Journal. January 2013, 49 (1): 167–176. doi:10.1016/j.eurpolymj.2012.10.015. 
  9. ^ Spyrou, Emmanouil. Radiation initiated cationic polymerization with tailor-made polyesters. Progress in Organic Coatings. November 2001, 43 (1–3): 25–31. doi:10.1016/S0300-9440(01)00240-5. 
  10. ^ Yagci, Yusuf; Schnabel, Wolfram. On the mechanism of photoinitiated cationic polymerization in the presence of polyols. Die Angewandte Makromolekulare Chemie. 1999-09-01, 270 (1): 38–41. doi:10.1002/(SICI)1522-9505(19990901)270:1<38::AID-APMC38>3.0.CO;2-S. 

相關