File:Animated construction of Sierpinski Triangle.gif

原始檔案 (950 × 980 像素,檔案大小:375 KB,MIME 類型:image/gif、​循環、​10 畫格、​5.0秒)


摘要

 
圖形使用SageMath創作。
描述
English: Animated construction of Sierpinski Triangle

Self-made.

授權條款

I made this with SAGE, an open-source math package. The latest source code lives here, and has a few better variable names & at least one small bug fix than the below. Others have requested source code for images I generated, below. Code is en:GPL; the exact code used to generate this image follows:

#*****************************************************************************
#       Copyright (C) 2008 Dean Moore  < dean dot moore at deanlm dot com >
#                                      < [email protected] >           
#                                        
#
#  Distributed under the terms of the GNU General Public License (GPL)
#                  http://www.gnu.org/licenses/
#*****************************************************************************
#################################################################################
#                                                                               #
# Animated Sierpinski Triangle.                                                 #
#                                                                               #
# Source code written by Dean Moore, March, 2008, open source GPL (above),      #
# source code open to the universe.                                             #
#                                                                               #
# Code animates construction of a Sierpinski Triangle.                          #
#                                                                               #
# See any reference on the Sierpinski Triangle, e.g., Wikipedia at              #
# < http://en.wikipedia.org/wiki/Sierpinski_triangle >; countless others are    #
# out there.                                                                    #
#                                                                               #
#                              Other info:                                      #
#                                                                               #
# Written in sage mathematical package sage (http://www.sagemath.org/), hence   #
# heavily using computer language Python (http://www.python.org/).              #
#                                                                               #
# Important algorithm note:                                                     #
#                                                                               #
# This code does not use recursion.                                             #
#                                                                               #
# More topmatter & documentation probably irrelevant to most:                   #
#                                                                               #
# Inspiration: I viewed it an interesting problem, to try to do an animated     #
# construction of a Sierpinski Triangle in sage.  Thought I'd be lazy & search  #
# the 'Net for open-source versions of this I could simply convert to sage, but #
# the open-source code I found was poorly documented & I couldn't figure it     #
# out, so I gave up & solved the problem from scratch.                          #
#                                                                               #
# Also, I wanted to animate the construction, which I did not find in           #
# open-source code on the 'Net.                                                 #
#                                                                               #
# Comments on algorithm:                                                        #
#                                                                               #
# The code I found on the 'Net was recursive.  I do not much like recursion,    #
# considering it way for programmers to say, "Look how smart I am!  I'm using   #
# recursion!  Aren't I cool?!"  I feel strongly recursion is often confusing,   #
# can chew up too much memory, and should be avoided except when                #
#                                                                               #
# a) It's unavoidable, or                                                       #
# b) The code would be atrocious without it.                                    #
#                                                                               #
# Did some thinking & swearing, but concocted a non-recursive method, and by    #
# doing the problem from scratch.  Guess it avoids all charges of copyright     #
# violation, plagiarism, whatever.                                              #
#                                                                               #
# More on algorithm via ASCII art.  Below we have a given triangle, shaded via  #
# x's.                                                                          #
#                                                                               #
# The next "generation" is the blank triangles.  Sit down & start a Sierpinski  #
# Triangle on scratch: the next generation is always two on each side of a      #
# given triangle from the last generation, one on top.  Algorithm takes the     #
# given, shaded triangle (below), and makes the three of the next generation    #
# arising from it.                                                              #
#                                                                               #
# See code for more on how this works.                                          #
#                            __________                                         #
#                            \        /                                         #
#                             \      /                                          #
#                              \    /                                           #
#                               \  /                                            #
#                       _________\/_________                                    #
#                       \ xxxxxxxxxxxxxxxx /                                    #
#                        \ xxxxxxxxxxxxxx /                                     #
#                         \ xxxxxxxxxxxx /                                      #
#                          \ xxxxxxxxxx /                                       #
#                  _________\ xxxxxxxx /_________                               #
#                  \        /\ xxxxxx /\        /                               #
#                   \      /  \ xxxx /  \      /                                #
#                    \    /    \ xx /    \    /                                 #
#                     \  /      \  /      \  /                                  #
#                      \/        \/        \/                                   #
#                                                                               #
#################################################################################
#                                                                               #
# Begin program:                                                                #
#                                                                               #
# First we need three functions; see the below code on how they are used.       #
#                                                                               #
# The three functions *right_side_triangle* , *left_side_triangle* &            #
# *top_triangle* are here defined & not as "lambda" functions, as they need     #
# documented.                                                                   #
#                                                                               #
# I don't care to replicate the poorly-documented code I found on the 'Net.     #
#                                                                               #
#################################################################################
#                                                                               #
# First function, *right_side_triangle*.                                        #
#                                                                               #
# Function *right_side_triangle* gives coordinates of next triangle on right    #
# side of a given triangle whose coordinates are passed in.                     #
#                                                                               #
# Points *p*, *r*, *q*, *s* & *t* are labeled as passed in:                     #
#                                                                               #
#  (p, r)____________________(q, r)                                             #
#        \                  /                                                   #
#         \                /                                                    #
#          \              /                                                     #
#           \            /                                                      #
#            \  (p1, r1)/_________ (q1, r1)                                     #
#             \        /\        /                                              #
#              \      /  \      /                                               #
#               \    /    \    /                                                #
#                \  /      \  /                                                 #
#                 \/        \/                                                  #
#               (s, t)   (s1, t1)                                               #
#                                                                               #
# p1 = (q + s)/2, a simple average.                                             #
# q1 = q + (q - s)/2 = (3*q - s)/2                                              #
# r1 = (r + t)/2, a simple average.                                             #
# s1 = q, easy.                                                                 #
# t1 = t, easy.                                                                 #
#                                                                               #
#################################################################################   

def right_side_triangle(p,q,r,s,t):

    p1 = (q + s)/2
    q1 = (3*q - s)/2
    r1 = (r + t)/2
    s1 = q        # A placeholder, solely to make code clear.
    t1 = t        # Ditto, a placeholder.  

    return ((p1,r1),(q1, r1),(s1, t1))

# End of function *right_side_triangle*.

#################################################################################
#                                                                               #
# Function *left_side_triangle*:                                                #
#                                                                               #
#                (p, q) ____________________(q, r)                              #
#                       \                  /                                    #
#                        \                /                                     #
#                         \              /                                      #
#                          \            /                                       #
#         (p1, r1) _________\ (q1, r1) /                                        #
#                  \        /\        /                                         #
#                   \      /  \      /                                          #
#                    \    /    \    /                                           #
#                     \  /      \  /                                            #
#                      \/        \/                                             #
#                   (s1, t1)   (s, t)                                           #
#                                                                               #
# p1 = p - (s - p)/2 = (2p-s+p)/2 = (3p - s)/2                                  #
# q1 = (p + s)/2, a simple average                                              #
# r1 = (r + t)/2, a simple average.                                             #
# s1 = p, easy.                                                                 #
# t1 = t, easy.                                                                 #
#                                                                               #
################################################################################# 

def left_side_triangle(p,q,r,s,t): 
 
    p1 = (3*p - s)/2
    q1 = (p + s)/2
    r1 = (r + t)/2
    s1 = p        # A placeholder, solely to make code clear.
    t1 = t        # Ditto, a placeholder.
    
    return ((p1,r1),(q1, r1),(s1, t1))

# End of function *left_side_triangle*.  

#################################################################################
#                                                                               #
# Function *top_triangle*.                                                      #
#                                                                               #
#                   (p1, r1) __________ (q1, r1)                                #
#                            \        /                                         #
#                             \      /                                          #
#                              \    /                                           #
#                               \  / (s1, t1)                                   #
#                 (p, r)_________\/_________                                    #
#                       \ xxxxxxxxxxxxxxxx /                                    #
#                        \ xxxxxxxxxxxxxx / (q, r)                              #
#                         \ xxxxxxxxxxxx /                                      #
#                          \ xxxxxxxxxx /                                       #
#                           \ xxxxxxxx /                                        #
#                            \ xxxxxx /                                         #
#                             \ xxxx /                                          #
#                              \ xx /                                           #
#                               \  /                                            #
#                                \/                                             #
#                              (s, t)                                           #
#                                                                               #
# p1 = (p + s)/2, a simple average.                                             #
# q1 = (s + q)/2, a simple average                                              #
# r1 = r + (r - t)/2 = (3r - t)/2                                               #
# s1 = s, easy.                                                                 #
# t1 = r, easy.                                                                 #
#                                                                               #
#################################################################################

def top_triangle(p,q,r,s,t): 

    p1 = (p + s)/2
    q1 = (s + q)/2
    r1 = (3*r - t)/2
    s1 = s          # Again, both this & next are
    t1 = r          # placeholders, solely to make code clear.

    return ((p1,r1),(q1, r1),(s1, t1))

# End of function *top_triangle*. 

#################################################################################
#                                                                               #
# Main program commences:                                                       #
#                                                                               #
################################################################################# 

# Top matter a user may wish to vary:

number_of_generations   = 8       # How "deep" goes the animation after initial triangle.
first_triangle_color    = (1,0,0) # First triangle's rgb color as red-green-blue tuple.
chopped_piece_color     = (0,0,0) # Color of "chopped" pieces as rgb tuple.
delay_between_frames    = 50      # Time between "frames" of final "movie."
figure_size             = 12      # Regulates size of final image.
initial_edge_length     = 3^7     # Initial edge length. 

# End of material user may realistically vary.  Rest should churn without user input.

number_of_triangles_in_last_generation = 3^number_of_generations # Always a power of three.
images                                 = []                      # Holds images of final "movie."  
coordinates                            = []                      # Holds coordinates. 

p0 = (0,0)                                # Initial points to start iteration -- note
p1 = (initial_edge_length, 0)             # y-values of *p0* & *p1* are the same -- an
p2 = ((p0[0] + p1[0])/2,                  # important book-keeping device.
     ((initial_edge_length/2)*sin(pi/3))) # Equilateral triangle; see any Internet
                                          # reference on these.

# We make a polygon (triangle) of initial points:

this_generations_image = polygon((p0, p1, p2), rgbcolor=first_triangle_color) 

images.append(this_generations_image) # Save image from last line.

coordinates = [( ( (p0[0] + p2[0])/2, (p0[1] + p2[1])/2 ),   # Coordinates
                 ( (p1[0] + p2[0])/2, (p1[1] + p2[1])/2 ),   # of second
                 ( (p0[0] + p1[0])/2, (p0[1] + p1[1])/2 ) )] # triangle.
                                                             # It is *supremely* important
                                                             # that the y-values of the first two
                                                             # points are equal -- check definitions
                                                             # above & code below.

this_generations_image = polygon(coordinates[0],             # Image of second triangle.
                                 rgbcolor=chopped_piece_color)
images.append(images[0] + this_generations_image) # Save second image, tacked on top of first.

# Now the loop that makes the images: 

number_of_triangles_in_this_generation = 1 # We have made one "chopped" triangle, the second, above.

while number_of_triangles_in_this_generation < number_of_triangles_in_last_generation:

    this_generations_image       = Graphics() # Holds next generation's image, initialize.
    next_generations_coordinates = []         # Holds next generation's coordinates, set to null. 

    for a,b,c in coordinates: # Loop on all triangles.

        (p, r)  = a      # Right point; note y-value of this & next are equal.
        (q, r1) = b      # Left point; note r1 = r & thus *r1* is irrelevant;
                         # it's only there for book-keeping.
        (s, t)  = c      # Bottom point.

        # Now construct the three triangles & their three polygons of the next
        # generation.

        right_triangle = right_side_triangle(p,q,r,s,t) # Here use those
        left_triangle  = left_side_triangle (p,q,r,s,t) # utility functions
        upper_triangle = top_triangle       (p,q,r,s,t) # defined at top.

        right = polygon(right_triangle, rgbcolor=(chopped_piece_color)) # Make next
        left  = polygon(left_triangle,  rgbcolor=(chopped_piece_color)) # generation's
        top   = polygon(upper_triangle, rgbcolor=(chopped_piece_color)) # triangles.

        this_generations_image = this_generations_image + (right + left + top) # Add image.
        
        next_generations_coordinates.append(right_triangle) # Save the coordinates
        next_generations_coordinates.append( left_triangle) # of triangles of the
        next_generations_coordinates.append(upper_triangle) # next generation.

       # End of "for a,b,c" loop.

    coordinates = next_generations_coordinates         # Save for next generation.
    images.append(images[-1] + this_generations_image) # Make next image: all previous
                                                       # images plus latest on top.
    number_of_triangles_in_this_generation *= 3        # Bump up.
 
# End of *while* loop.

a = animate(images, figsize=[figure_size, figure_size], axes=False) # Make image, ...
a.show(delay = delay_between_frames)                                # Show image.
 
 # End of program.

End of code.
日期

2008年3月23日 (原始上傳日期)

(Original text: March 23, 2008)
來源 自己的作品 (Original text: self-made)
作者

英文維基百科Dino

(Original text: dino (talk))

授權條款

英文維基百科Dino,此作品的版權所有人,決定用以下授權條款發佈本作品:
w:zh:共享創意
姓名標示 相同方式分享
姓名標示: 英文維基百科Dino
您可以自由:
  • 分享 – 複製、發佈和傳播本作品
  • 重新修改 – 創作演繹作品
惟需遵照下列條件:
  • 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
  • 相同方式分享 – 如果您利用本素材進行再混合、轉換或創作,您必須基於如同原先的相同或兼容的條款,來分布您的貢獻成品。
GNU head 已授權您依據自由軟體基金會發行的無固定段落、封面文字和封底文字GNU自由文件授權條款1.2版或任意後續版本,對本檔進行複製、傳播和/或修改。該協議的副本列在GNU自由文件授權條款中。
您可以選擇您需要的授權條款。

原始上傳日誌

The original description page was here. All following user names refer to en.wikipedia.
  • 2008-03-23 18:33 Dino 1200×1200×7 (344780 bytes) {{Information |Description=Animated construction of Sierpinski Triangle |Source=self-made |Date=March 23, 2008 |Location=Boulder, Colorado |Author=~~~ |other_versions= }} Self-made. Will post source code later.

說明

添加單行說明來描述出檔案所代表的內容
Animation construction the Sierpinski Triangle.

在此檔案描寫的項目

描繪內容

著作權狀態 繁體中文 (已轉換拼寫)

有著作權 繁體中文 (已轉換拼寫)

檔案來源 Chinese (Taiwan) (已轉換拼寫)

上傳者的原創作品 繁體中文 (已轉換拼寫)

多媒體型式 繁體中文 (已轉換拼寫)

image/gif

校驗和 繁體中文 (已轉換拼寫)

5b78b6d9a0c951fd72acd22b4b236875f41679c2

斷定方法:​SHA-1 中文 (已轉換拼寫)

384,183 位元組

5

980 像素

950 像素

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸用戶備⁠註
目前2011年2月10日 (四) 02:41於 2011年2月10日 (四) 02:41 版本的縮圖950 × 980(375 KB)DeanmooreSeemingly better version
2008年4月12日 (六) 20:34於 2008年4月12日 (六) 20:34 版本的縮圖1,200 × 1,200(337 KB)יוסי{{Information |Description={{en|Animated construction of Sierpinski Triangle<br/> Self-made. == Licensing: == I made this with SAGE, an open-source math package. The latest source code lives [h

下列頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案: