File:Regular divisibility lattice.svg

原始檔案 (SVG 檔案,表面大小:1,363 × 809 像素,檔案大小:13 KB)


摘要

描述 A Hasse diagram of divisibility relationships among regular numbers up to 400. As shown by the horizontal light red lines, the vertical position of each number is proportional to its logarithm. Inspired by similar diagrams in a paper by Kurenniemi [1].
日期 2007年3月14日 (原始上傳日期)
來源 Transferred from en.wikipedia to Commons.
作者 英文維基百科David Eppstein

授權條款

Public domain 此作品已由其作者,英文維基百科David Eppstein,釋出至公有領域。此授權條款在全世界均適用。
這可能在某些國家不合法,如果是的話:
David Eppstein授予任何人有權利使用此作品於任何用途,除受法律約束外,不受任何限制。

Source code

The Python source code for generating this image:

from math import log

limit = 400
radius = 17
margin = 4
xscale = yscale = 128
skew = 0.285

def A051037():
    yield 1
    seq = [1]
    spiders = [(2,2,0,0),(3,3,0,1),(5,5,0,2)]
    while True:
        x,p,i,j = min(spiders)
        if x != seq[-1]:
            yield x
            seq.append(x)
        spiders[j] = (p*seq[i+1],p,i+1,j)

def nfactors(h,p):
    nf = 0
    while h % p == 0:
        nf += 1
        h //= p
    return nf

seq = []
for h in A051037():
    if h > limit:
        break
    seq.append((h,nfactors(h,2),nfactors(h,3),nfactors(h,5)))

leftmost = max([k for h,i,j,k in seq])
rightmost = max([j for h,i,j,k in seq])
leftwidth = int(0.5 + log(5) * leftmost * xscale + radius + margin)
rightwidth = int(0.5 + log(3) * rightmost * xscale + radius + margin)
width = leftwidth + rightwidth
height = int(0.5 + log(limit) * yscale + 2*(radius + margin))

def place(h,i,j,k):
    # logical coordinates
    x = j * log(3) - k * log(5) + i * skew
    y = log(h)
    
    # physical coordinates
    x = (x*xscale) + leftwidth
    y = (-y*yscale) + height - radius - margin
    
    return (x,y)

print '''<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="%d" height="%d">''' % (width,height)

print '    <g style="fill:none;stroke:#ffaaaa;">'

l = 1
base = 1
while l <= limit:
    y = -yscale*log(l) + height - radius - margin
    print '        <path d="M0,%0.2fL%d,%0.2f"/>' % (y,width,y)
    l += base
    if l == 10*base:
        base = l

print "    </g>"
print '    <g style="fill:none;stroke-width:1.5;stroke:#0000cc;">'

def drawSegment(p,q):
    x1,y1=p
    x2,y2=q
    print '        <path d="M%0.2f,%0.2fL%0.2f,%0.2f"/>' % (x1,y1,x2,y2)

for h,i,j,k in seq:
    x,y = place(h,i,j,k)
    if i > 0:
        drawSegment(place(h//2,i-1,j,k),(x,y))
    if j > 0:
        drawSegment(place(h//3,i,j-1,k),(x,y))
    if k > 0:
        drawSegment(place(h//5,i,j,k-1),(x,y))

print "    </g>"
print '    <g style="fill:#ffffff;stroke:#000000;">'

for h,i,j,k in seq:
    x,y = place(h,i,j,k)
    print '        <circle cx="%0.2f" cy="%0.2f" r="%d"/>' % (x,y,radius)

# pairs of first value with size: size of that value
fontsizes = {1:33, 5:30, 10:27, 20:24, 100:20, 200:18}

for h,i,j,k in seq:
    x,y = place(h,i,j,k)
    if h in fontsizes:
        print "    </g>"
        print '    <g style="font-family:Times;font-size:%d;text-anchor:middle;">' % fontsizes[h]
        lower = fontsizes[h] / 3.
    print '        <text x="%0.2f" y="%0.2f">%d</text>' %(x,y+lower,h)
print "    </g>"
print "</svg>"

原始上傳日誌

The original description page was here. All following user names refer to en.wikipedia.
  • 2007-03-14 05:08 David Eppstein 1363×809×0 (13167 bytes) A [[Hasse diagram]] of [[divisibility]] relationships among [[regular number]]s up to 400. Inspired by similar diagrams in a paper by Kurenniemi [http://www.beige.org/projects/dimi/CSDL2.pdf].

說明

添加單行說明來描述出檔案所代表的內容

在此檔案描寫的項目

描繪內容

著作權狀態 繁體中文 (已轉換拼寫)

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸用戶備⁠註
目前2010年3月13日 (六) 02:57於 2010年3月13日 (六) 02:57 版本的縮圖1,363 × 809(13 KB)David EppsteinFix fonts
2007年7月24日 (二) 22:10於 2007年7月24日 (二) 22:10 版本的縮圖1,363 × 809(13 KB)David Eppstein{{Information |Description=A en:Hasse diagram of en:divisibility relationships among en:regular numbers up to 400. As shown by the horizontal light red lines, the vertical position of each number is proportional to its en:logarithm. In

下列頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案: