對於三維空間中任意一參考點
Q
{\displaystyle Q}
與以此參考點為原點的直角坐標系
Q
x
y
z
{\displaystyle Qxyz}
,一個剛體的慣性張量
I
{\displaystyle \mathbf {I} \,\!}
是
I
=
[
I
x
x
I
x
y
I
x
z
I
y
x
I
y
y
I
y
z
I
z
x
I
z
y
I
z
z
]
{\displaystyle \mathbf {I} ={\begin{bmatrix}I_{xx}&I_{xy}&I_{xz}\\I_{yx}&I_{yy}&I_{yz}\\I_{zx}&I_{zy}&I_{zz}\end{bmatrix}}\,\!}
。(1)
這裏,矩陣的對角元素
I
x
x
{\displaystyle I_{xx}\,\!}
、
I
y
y
{\displaystyle I_{yy}\,\!}
、
I
z
z
{\displaystyle I_{zz}\,\!}
分別為對於
x
{\displaystyle x}
-軸、
y
{\displaystyle y}
-軸、
z
{\displaystyle z}
-軸的轉動慣量 。設定
(
x
,
y
,
z
)
{\displaystyle (x,\ y,\ z)\,\!}
為微小質量
d
m
{\displaystyle dm\,\!}
對於點
Q
{\displaystyle Q}
的相對位置。則這些轉動慣量以方程式定義為
I
x
x
=
d
e
f
∫
(
y
2
+
z
2
)
d
m
{\displaystyle I_{xx}\ {\stackrel {\mathrm {def} }{=}}\ \int \ (y^{2}+z^{2})\ dm\,\!}
,
I
y
y
=
d
e
f
∫
(
x
2
+
z
2
)
d
m
{\displaystyle I_{yy}\ {\stackrel {\mathrm {def} }{=}}\ \int \ (x^{2}+z^{2})\ dm\,\!}
,(2)
I
z
z
=
d
e
f
∫
(
x
2
+
y
2
)
d
m
{\displaystyle I_{zz}\ {\stackrel {\mathrm {def} }{=}}\ \int \ (x^{2}+y^{2})\ dm\,\!}
。
矩陣的非對角元素,稱為慣量積 ,以方程式定義為
I
x
y
=
I
y
x
=
d
e
f
−
∫
x
y
d
m
{\displaystyle I_{xy}=I_{yx}\ {\stackrel {\mathrm {def} }{=}}\ -\int \ xy\ dm\,\!}
,
I
x
z
=
I
z
x
=
d
e
f
−
∫
x
z
d
m
{\displaystyle I_{xz}=I_{zx}\ {\stackrel {\mathrm {def} }{=}}\ -\int \ xz\ dm\,\!}
,(3)
I
y
z
=
I
z
y
=
d
e
f
−
∫
y
z
d
m
{\displaystyle I_{yz}=I_{zy}\ {\stackrel {\mathrm {def} }{=}}\ -\int \ yz\ dm\,\!}
。
導引
圖A
如圖
A
{\displaystyle A}
,一個剛體對於質心
G
{\displaystyle G}
與以點
G
{\displaystyle G}
為原點的直角座標系
G
x
y
z
{\displaystyle Gxyz}
的角動量
L
G
{\displaystyle \mathbf {L} _{G}\,\!}
定義為
L
G
=
∫
r
×
v
d
m
{\displaystyle \mathbf {L} _{G}=\int \ \mathbf {r} \times \mathbf {v} \ dm\,\!}
。
這裏,
r
{\displaystyle \mathbf {r} \,\!}
代表微小質量
d
m
{\displaystyle dm\,\!}
在
G
x
y
z
{\displaystyle Gxyz}
座標系的位置,
v
{\displaystyle \mathbf {v} \,\!}
代表微小質量的速度。因為速度是角速度
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
叉積位置,所以,
L
G
=
∫
r
×
(
ω
×
r
)
d
m
{\displaystyle \mathbf {L} _{G}=\int \ \mathbf {r} \times ({\boldsymbol {\omega }}\times \mathbf {r} )\ dm\,\!}
。
計算
x
{\displaystyle x}
-軸分量,
L
G
x
=
∫
y
(
ω
×
r
)
z
−
z
(
ω
×
r
)
y
d
m
=
∫
y
ω
x
y
−
y
ω
y
x
+
z
ω
x
z
−
z
ω
z
x
d
m
=
∫
ω
x
(
y
2
+
z
2
)
−
ω
y
x
y
−
ω
z
x
z
d
m
=
ω
x
∫
(
y
2
+
z
2
)
d
m
−
ω
y
∫
x
y
d
m
−
ω
z
∫
x
z
d
m
.
{\displaystyle {\begin{aligned}L_{Gx}&=\int \ y({\boldsymbol {\omega }}\times \mathbf {r} )_{z}-z({\boldsymbol {\omega }}\times \mathbf {r} )_{y}\ dm\\&=\int \ y\omega _{x}y-y\omega _{y}x+z\omega _{x}z-z\omega _{z}x\ dm\\&=\int \ \omega _{x}(y^{2}+z^{2})-\omega _{y}xy-\omega _{z}xz\ dm\\&=\omega _{x}\int \ (y^{2}+z^{2})\ dm-\omega _{y}\int \ xy\ dm-\omega _{z}\int \ xz\ dm\ .\end{aligned}}\,\!}
相似地計算
y
{\displaystyle y}
-軸與
z
{\displaystyle z}
-軸分量,角動量為
L
G
x
=
ω
x
∫
(
y
2
+
z
2
)
d
m
−
ω
y
∫
x
y
d
m
−
ω
z
∫
x
z
d
m
{\displaystyle L_{Gx}=\omega _{x}\int \ (y^{2}+z^{2})\ dm-\omega _{y}\int \ xy\ dm-\omega _{z}\int \ xz\ dm\,\!}
,
L
G
y
=
−
ω
x
∫
x
y
d
m
+
ω
y
∫
(
x
2
+
z
2
)
d
m
−
ω
z
∫
y
z
d
m
{\displaystyle L_{Gy}=-\omega _{x}\int \ xy\ dm+\omega _{y}\int \ (x^{2}+z^{2})\ dm-\omega _{z}\int \ yz\ dm\,\!}
,
L
G
z
=
−
ω
x
∫
x
z
d
m
−
ω
y
∫
y
z
d
m
+
ω
z
∫
(
x
2
+
y
2
)
d
m
{\displaystyle L_{Gz}=-\omega _{x}\int \ xz\ dm-\omega _{y}\int \ yz\ dm+\omega _{z}\int \ (x^{2}+y^{2})\ dm\,\!}
。
如果,我們用方程式(1)設定對於質心
G
{\displaystyle G}
的慣性張量
I
G
{\displaystyle \mathbf {I} _{G}\,\!}
,讓角速度
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
為
(
ω
x
,
ω
y
,
ω
z
)
{\displaystyle (\omega _{x}\;,\;\omega _{y}\;,\;\omega _{z})\,\!}
,那麼,
L
G
=
I
G
ω
{\displaystyle \mathbf {L} _{G}=\mathbf {I} _{G}\ {\boldsymbol {\omega }}\,\!}
。(4)
平行軸定理
平行軸定理能夠很簡易的,從對於一個以質心為原點的座標系統的慣性張量,轉換至另外一個平行的座標系統。假若已知剛體對於質心
G
{\displaystyle G}
的慣性張量
I
G
{\displaystyle \mathbf {I} _{G}\,\!}
,而質心
G
{\displaystyle G}
的位置是
(
x
¯
,
y
¯
,
z
¯
)
{\displaystyle ({\bar {x}},\ {\bar {y}},\ {\bar {z}})\,\!}
,則剛體對於原點
O
{\displaystyle O}
的慣性張量
I
{\displaystyle \mathbf {I} \,\!}
,依照平行軸定理,可以表述為
I
x
x
=
I
G
,
x
x
+
m
(
y
¯
2
+
z
¯
2
)
{\displaystyle I_{xx}=I_{G,xx}+m({\bar {y}}^{2}+{\bar {z}}^{2})\,\!}
,
I
y
y
=
I
G
,
y
y
+
m
(
x
¯
2
+
z
¯
2
)
{\displaystyle I_{yy}=I_{G,yy}+m({\bar {x}}^{2}+{\bar {z}}^{2})\,\!}
,(5)
I
z
z
=
I
G
,
z
z
+
m
(
x
¯
2
+
y
¯
2
)
{\displaystyle I_{zz}=I_{G,zz}+m({\bar {x}}^{2}+{\bar {y}}^{2})\,\!}
,
I
x
y
=
I
y
x
=
I
G
,
x
y
−
m
x
¯
y
¯
{\displaystyle I_{xy}=I_{yx}=I_{G,xy}-m{\bar {x}}{\bar {y}}\,\!}
,
I
x
z
=
I
z
x
=
I
G
,
x
z
−
m
x
¯
z
¯
{\displaystyle I_{xz}=I_{zx}=I_{G,xz}-m{\bar {x}}{\bar {z}}\,\!}
,(6)
I
y
z
=
I
z
y
=
I
G
,
y
z
−
m
y
¯
z
¯
{\displaystyle I_{yz}=I_{zy}=I_{G,yz}-m{\bar {y}}{\bar {z}}\,\!}
。
證明:
圖B
a)參考圖B,讓
(
x
′
,
y
′
,
z
′
)
{\displaystyle (x\,',\ y\,',\ z\,')\,\!}
、
(
x
,
y
,
z
)
{\displaystyle (x,\ y,\ z)\,\!}
分別為微小質量
d
m
{\displaystyle dm\,\!}
對質心
G
{\displaystyle G}
與原點
O
{\displaystyle O}
的相對位置:
y
=
y
′
+
y
¯
{\displaystyle y=y\,'+{\bar {y}}\,\!}
,
z
=
z
′
+
z
¯
{\displaystyle z=z\,'+{\bar {z}}\,\!}
。
依照方程式(2),
I
G
,
x
x
=
∫
(
y
′
2
+
z
′
2
)
d
m
{\displaystyle I_{G,xx}=\int \ (y\,'\,^{2}+z\,'\,^{2})\ dm\,\!}
I
x
x
=
∫
(
y
2
+
z
2
)
d
m
{\displaystyle I_{xx}=\int \ (y^{2}+z^{2})\ dm\,\!}
。
所以,
I
x
x
=
∫
[
(
y
′
+
y
¯
)
2
+
(
z
′
+
z
¯
)
2
]
d
m
=
I
G
,
x
x
+
m
(
y
¯
2
+
z
¯
2
)
.
{\displaystyle {\begin{aligned}I_{xx}&=\int \ [(y\,'+{\bar {y}})^{2}+(z\,'+{\bar {z}})^{2}]\ dm\\&=I_{G,xx}+m({\bar {y}}^{2}+{\bar {z}}^{2})\ .\\\end{aligned}}\,\!}
相似地,可以求得
I
y
y
{\displaystyle I_{yy}\,\!}
、
I
z
z
{\displaystyle I_{zz}\,\!}
的方程式。
b)依照方程式(3),
I
G
,
x
y
=
−
∫
x
′
y
′
d
m
{\displaystyle I_{G,xy}=-\int \ x\,'y\,'\ dm\,\!}
。
I
x
y
=
−
∫
x
y
d
m
{\displaystyle I_{xy}=-\int \ xy\ dm\,\!}
。
因為
x
=
x
′
+
x
¯
{\displaystyle x=x\,'+{\bar {x}}\,\!}
,
y
=
y
′
+
y
¯
{\displaystyle y=y\,'+{\bar {y}}\,\!}
,所以
I
x
y
=
−
∫
(
x
′
+
x
¯
)
(
y
′
+
y
¯
)
d
m
=
I
G
,
x
y
−
m
x
¯
y
¯
.
{\displaystyle {\begin{aligned}I_{xy}&=-\int \ (x\,'+{\bar {x}})(y\,'+{\bar {y}})\ dm\\&=I_{G,xy}-m{\bar {x}}{\bar {y}}\ .\\\end{aligned}}\,\!}
相似地,可以求得對於點
O
{\displaystyle O}
的其他慣量積方程式。
對於任意軸的轉動慣量
圖C
參視圖C,設定點
O
{\displaystyle O}
為直角座標系的原點,點
Q
{\displaystyle Q}
為三維空間裏任意一點,
Q
{\displaystyle Q}
不等於
O
{\displaystyle O}
。思考一個剛體,對於
O
Q
{\displaystyle OQ}
-軸的轉動慣量是
I
O
Q
=
∫
ρ
2
d
m
=
∫
|
η
×
r
|
2
d
m
{\displaystyle I_{OQ}\ =\int \ \rho ^{2}\ dm\ =\ \int \ \left|{\boldsymbol {\eta }}\times \mathbf {r} \right|^{2}\ dm\,\!}
。
這裏,
ρ
{\displaystyle \rho \,\!}
是微小質量
d
m
{\displaystyle dm\,\!}
離
O
Q
{\displaystyle OQ}
-軸的垂直距離,
η
{\displaystyle {\boldsymbol {\eta }}\,\!}
是沿著
O
Q
{\displaystyle OQ}
-軸的單位向量 ,
r
=
(
x
,
y
,
z
)
{\displaystyle \mathbf {r} =(x,\ y,\ z)\,\!}
是微小質量
d
m
{\displaystyle dm\,\!}
的位置。
展開叉積,
I
O
Q
=
∫
[
(
η
y
z
−
η
z
y
)
2
+
(
η
x
z
−
η
z
x
)
2
+
(
η
x
y
−
η
y
x
)
2
]
d
m
{\displaystyle I_{OQ}=\int \ [(\eta _{y}z-\eta _{z}y)^{2}+(\eta _{x}z-\eta _{z}x)^{2}+(\eta _{x}y-\eta _{y}x)^{2}]\ dm\,\!}
。
稍微加以編排,
I
O
Q
=
η
x
2
∫
(
y
2
+
z
2
)
d
m
+
η
y
2
∫
(
x
2
+
z
2
)
d
m
+
η
z
2
∫
(
x
2
+
y
2
)
d
m
−
2
η
x
η
y
∫
x
y
d
m
−
2
η
x
η
z
∫
x
z
d
m
−
2
η
y
η
z
∫
y
z
d
m
.
{\displaystyle {\begin{aligned}I_{OQ}=&\eta _{x}^{2}\int \ (y^{2}+z^{2})\ dm+\eta _{y}^{2}\int \ (x^{2}+z^{2})\ dm+\eta _{z}^{2}\int \ (x^{2}+y^{2})\ dm\\&-2\eta _{x}\eta _{y}\int \ xy\ dm-2\eta _{x}\eta _{z}\int \ xz\ dm-2\eta _{y}\eta _{z}\int \ yz\ dm\ .\\\end{aligned}}\,\!}
特別注意,從方程式(2)、(3),這些積分項目,分別是剛體對於
x
{\displaystyle x}
-軸、
y
{\displaystyle y}
-軸、
z
{\displaystyle z}
-軸的轉動慣量與慣量積。因此,
I
O
Q
=
η
x
2
I
x
x
+
η
y
2
I
y
y
+
η
z
2
I
z
z
+
2
η
x
η
y
I
x
y
+
2
η
x
η
z
I
x
z
+
2
η
y
η
z
I
y
z
{\displaystyle I_{OQ}=\eta _{x}^{2}I_{xx}+\eta _{y}^{2}I_{yy}+\eta _{z}^{2}I_{zz}+2\eta _{x}\eta _{y}I_{xy}+2\eta _{x}\eta _{z}I_{xz}+2\eta _{y}\eta _{z}I_{yz}\,\!}
。(7)
如果已經知道,剛體對於直角座標系的三個座標軸,
x
{\displaystyle x}
-軸、
y
{\displaystyle y}
-軸、
z
{\displaystyle z}
-軸的轉動慣量。那麼,對於
O
Q
{\displaystyle OQ}
-軸的轉動慣量,可以用此方程式求得。
主轉動慣量
因為慣性張量
I
{\displaystyle \mathbf {I} \,\!}
是個實值 的三階對稱矩陣 ,我們可以用對角線化,將慣量積變為零,使慣性張量成為一個對角矩陣 [ 2] 。我們可以證明得到的三個特徵值 必為正實數,而且三個特徵向量 必定互相正交 。
換另外一種方法,我們需要解析特徵方程式
I
ω
=
λ
ω
{\displaystyle \mathbf {I} \ {\boldsymbol {\omega }}=\lambda \;{\boldsymbol {\omega }}\,\!}
。(8)
也就是以下行列式 等於零的三次方程式 :
det
(
I
−
[
1
0
0
0
1
0
0
0
1
]
λ
)
=
|
I
x
x
−
λ
I
x
y
I
x
z
I
y
x
I
y
y
−
λ
I
y
z
I
z
x
I
z
y
I
z
z
−
λ
|
=
0
{\displaystyle \det {(\mathbf {I} -\left[{\begin{matrix}1&0&0\\0&1&0\\0&0&1\end{matrix}}\right]\lambda )}={\begin{vmatrix}I_{xx}-\lambda &I_{xy}&I_{xz}\\I_{yx}&I_{yy}-\lambda &I_{yz}\\I_{zx}&I_{zy}&I_{zz}-\lambda \end{vmatrix}}\,\!=0}
。
這方程式的三個根
λ
1
{\displaystyle \lambda _{1}\,\!}
、
λ
2
{\displaystyle \lambda _{2}\,\!}
、
λ
3
{\displaystyle \lambda _{3}\,\!}
都是正實的特徵值。將特徵值代入方程式(8),再加上方向餘弦 方程式,
ω
x
2
+
ω
y
2
+
ω
z
2
=
1
{\displaystyle \omega _{x}^{2}+\omega _{y}^{2}+\omega _{z}^{2}=1\,\!}
,
我們可以求到特徵向量
ω
^
1
{\displaystyle {\hat {\boldsymbol {\omega }}}_{1}\,\!}
、
ω
^
2
{\displaystyle {\hat {\boldsymbol {\omega }}}_{2}\,\!}
、
ω
^
3
{\displaystyle {\hat {\boldsymbol {\omega }}}_{3}\,\!}
。這些特徵向量都是剛體的慣量主軸 ;而這些特徵值則分別是剛體對於慣量主軸的主轉動慣量 。
假設
x
{\displaystyle x}
-軸、
y
{\displaystyle y}
-軸、
z
{\displaystyle z}
-軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為
I
x
{\displaystyle I_{x}\,\!}
、
I
y
{\displaystyle I_{y}\,\!}
、
I
z
{\displaystyle I_{z}\,\!}
,角速度是
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
。那麼,角動量為
L
=
(
I
x
ω
x
,
I
y
ω
y
,
I
z
ω
z
)
{\displaystyle \mathbf {L} =(I_{x}\omega _{x}\;,\;I_{y}\omega _{y}\;,\;I_{z}\omega _{z})\,\!}
。
動能
剛體的動能
K
{\displaystyle K\,\!}
可以定義為
K
=
1
2
m
v
¯
2
+
1
2
∫
v
2
d
m
{\displaystyle K={\frac {1}{2}}m{\bar {v}}^{2}+{\frac {1}{2}}\int \ v^{2}\ dm\,\!}
,
這裏,
v
¯
{\displaystyle {\bar {v}}\,\!}
是剛體質心的速度,
v
{\displaystyle v\,\!}
是微小質量
d
m
{\displaystyle dm\,\!}
相對於質心的速度。在方程式裏,等號右邊第一個項目是剛體平移運動 的動能,第二個項目是剛體旋轉運動 的動能
K
′
{\displaystyle K\,\!'\,\!}
。由於這旋轉運動是繞著質心轉動的,
K
′
=
1
2
∫
(
ω
×
r
)
⋅
(
ω
×
r
)
d
m
{\displaystyle K\,\!'={\frac {1}{2}}\int \ ({\boldsymbol {\omega }}\times \mathbf {r} )\cdot ({\boldsymbol {\omega }}\times \mathbf {r} )\ dm\,\!}
。
這裏,
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
是微小質量
d
m
{\displaystyle dm\,\!}
繞著質心的角速度,
r
{\displaystyle \mathbf {r} \,\!}
是
d
m
{\displaystyle dm\,\!}
對於質心的相對位置。
應用向量恆等式 ,可以得到
K
′
=
1
2
ω
⋅
∫
r
×
(
ω
×
r
)
d
m
=
1
2
ω
⋅
L
{\displaystyle K\,\!'={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \int \ \mathbf {r} \times ({\boldsymbol {\omega }}\times \mathbf {r} )\ dm={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \mathbf {L} \,\!}
。
或者,用矩陣來表達,
K
′
=
1
2
ω
T
I
ω
{\displaystyle K\,\!'={\frac {1}{2}}{\boldsymbol {\omega }}^{\operatorname {T} }\ \mathbf {I} \ {\boldsymbol {\omega }}\,\!}
。
所以,剛體的動能為
K
=
1
2
m
v
¯
2
+
1
2
(
I
x
x
ω
x
2
+
I
y
y
ω
y
2
+
I
z
z
ω
z
2
+
2
I
x
y
ω
x
ω
y
+
2
I
x
z
ω
x
ω
z
+
2
I
y
z
ω
y
ω
z
)
{\displaystyle K={\frac {1}{2}}m{\bar {v}}^{2}+{\frac {1}{2}}(I_{xx}{\omega _{x}}^{2}+I_{yy}{\omega _{y}}^{2}+I_{zz}{\omega _{z}}^{2}+2I_{xy}\omega _{x}\omega _{y}+2I_{xz}\omega _{x}\omega _{z}+2I_{yz}\omega _{y}\omega _{z})\,\!}
。(9)
假設
x
{\displaystyle x}
-軸、
y
{\displaystyle y}
-軸、
z
{\displaystyle z}
-軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為
I
x
{\displaystyle I_{x}\,\!}
、
I
y
{\displaystyle I_{y}\,\!}
、
I
z
{\displaystyle I_{z}\,\!}
,角速度是
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
。那麼,剛體的動能為
K
=
1
2
m
v
¯
2
+
1
2
(
I
x
ω
x
2
+
I
y
ω
y
2
+
I
z
ω
z
2
)
{\displaystyle K={\frac {1}{2}}m{\bar {v}}^{2}+{\frac {1}{2}}(I_{x}{\omega _{x}}^{2}+I_{y}{\omega _{y}}^{2}+I_{z}{\omega _{z}}^{2})\,\!}
。(10)