腎形線
此條目需要补充更多来源。 (2020年4月) |
腎形線(nephroid)是外形類似腎臟的平面曲线,其英文nephroid源自希腊语的 ὁ νεφρός (ho nephros),和腎臟科的英文nephrology有相同的字根。腎形線主要是指Richard A. Proctor在1878年提出的曲線,不過有時也會用來描述其他曲線[1][2]。
腎形線是六度的代數曲線,可以用一個半徑為 的圓在半徑為的固定圓上滾動而得,因此腎形線也屬於外摆线,有二個尖點。腎形線是平面的簡單閉曲線,因此也是若爾當曲線。
方程式
考慮一小圓在一固定圓的外面滾動,若小圓的半徑為 ,固定圓的圓心在 ,半徑為 ,小圓的滾動角為 ,啟始點為 (如圖所示),則可以得到腎形線的
- 參數式
將 和 代入以下方程
可知上述方程即為腎形線的隱函數表示式。
若尖點是在Y軸上,則參數式為
隱函數表示式為
性質
上述的腎形線,有以下的性質
參考資料
- ^ Weisstein, Eric W. (编). Nephroid. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
- ^ Nephroid. Maths History. [2022-08-12]. (原始内容存档于2024-03-15) (英语).
- Arganbright, D., Practical Handbook of Spreadsheet Curves and Geometric Constructions, CRC Press, 1939, ISBN 0-8493-8938-0, p. 54.
- Borceux, F., A Differential Approach to Geometry: Geometric Trilogy III, Springer, 2014, ISBN 978-3-319-01735-8, p. 148.
- Lockwood, E. H., A Book of Curves, Cambridge University Press, 1961, ISBN 978-0-521-0-5585-7, p. 7.