捕捞对环境的影响

捕捞对环境的影响(英语:Environmental impact of fishing)涵盖的有可供捕捞的水产、过度捕捞渔场渔业管理等方面,还有工业化捕鱼附带产生因素(例如混获)对环境的影响。[1]这些问题存在在海洋保护英语marine conservation的范畴内,可透过渔业学计划寻求解决的方式。根据粮农组织(FAO)在2019年发表的报告,全球在鱼类、甲壳动物软体动物和其他水生动物的捕获量持续增长,在2017年达到1.726亿吨,比2016年增长4.1%。[2]但水产类的供应不敷需求,差距越来越大,世界人口增长是导致这种结果的原因之一。[3]

沿食物网捕捞英语Fishing down the foodweb
对高营养级鱼类(如鲔鱼)的过度捕捞会导致
海洋中仅剩下低营养级的海生物(如水母)。
野生捕捞和水产养殖水产品的温室气体排放比较(公斤(排放)/公斤(可食用重量))。

捕捞和随之产生的污染是导致海洋健康和水质下降的最大原因。幽灵渔网英语ghost net(即遗弃在海洋中的渔网)是由塑料尼龙制成,需极长时间才有机会分解,会对海中野生动物和生态系统造成极大破坏。海洋占地球面积的70%,过度捕捞和破坏海洋环境会对地球上的每个人和每件事都产生影响。除过度捕捞之外,大量水产品浪费而造成的供应不足,还有海洋中的微塑料也导致水产品受到污染。后者主要是由海洋废弃物中的塑料,以及塑料制成的渔具(如流网英语drift net延绳渔网,这些渔具因使用磨损、丢失或被抛弃)所产生。[4][5]

科学杂志》于2006年11月发表一项为期4年的研究报告,预测若照目前的趋势,世界将在2048年耗尽野生捕捞的海产类。研究者表示这种结果是因有过度捕捞、污染和其他环境因素同时发生,海洋生态系统遭到破坏,海产生物数量因而大幅下降的结果。为此,如东加美国澳大利亚巴哈马等许多国家和国际管理机构已采取措施,设法妥善管理海洋资源。[6][7]

由于拖网捕鱼英语trawling使用巨大渔网在海底拖曳,这种过度捕捞的方式也同时把珊瑚礁破坏,许多在珊瑚礁环境中生活的物种(参见生态栖位)也因此受到威胁。


生产不同种类食物的平均温室气体排放效果[8]
Food types 温室气体排放 (克CO2当量/克蛋白质
牛肉
62
再循环水产养殖系统英语Recirculating aquaculture system
30
拖网捕捞
26
水产养殖
12
猪肉
10
禽肉
10
乳制品
9.1
渔业
8.6
蛋类
6.8
根菜英语root vegetable
1.7
小麦
1.2
玉米
1.2
豆类
0.25


对海洋栖息地的影响

 
遭船舶螺旋桨伤害致命的海龟。

有几种捕捞方式会导致栖息地遭到破坏。[9]爆破捕鱼和氰化物捕鱼(许多地方将其列为非法)会危害到其周围的海生生物栖息地。 [9]爆破捕鱼是指引爆炸药后而捕鱼的做法。氰化物捕鱼是指使用氰化物让鱼昏迷后再捕获的做法。后者常用于捕获供食用的活珊瑚礁鱼类贸易,以及供水族馆鱼类贸易之用。[9][10]底拖网捕鱼是在拖网渔船之后沿着海底拖曳渔网的做法,单次作业就可将沿途约5%到25%的海底生物移除。[11]这种捕鱼方法往往会造成大量混获。[10]巴塞罗那东北方地中海的La Fonera Canyon(海沟)所做的一项研究,比较拖网捕捞和非拖网捕捞的结果,结果显示在500至2000米深度的非拖网捕捞区域较500米深的拖网捕捞区域具有更多的生物多样性、生物量和小型底栖无脊椎动物英语Meiobenthos[12]大多数影响是由商业捕鱼所造成。[13]联合国第7任秘书长科菲·安南在2005年联合国千禧年计划英语United Nations Millennium Project的报告中建议在2006年取消公海底拖网捕捞,以保护海底山和其他生态敏感的栖息地。但此并未实现。

美国布希总统与其他世界领导人在2006年10月中旬出面呼吁暂停深海拖网捕鱼,因这种做法通常会对海洋栖息地产生有害影响,也因此会危害栖息于当地的鱼类种群,[14]但并未有进一步行动。海洋动物生态系统也可能因为食物链遭到破坏而崩溃。

此外,由幽灵渔网产生的幽灵捕捞(ghost fishing)是种重大威胁。[15]当渔网(如流刺网或拖网)在海上丢失或抛弃而漂流时,会对海洋动物发生缠绕或困住的风险。[15]根据粮农组织的负责任渔业行为守则(Code of Conduct for Responsible Fisheries),各国应采行动,尽力减少丢失和抛弃渔具的数量,以降低海洋生物受伤的机会。 [16]

过度捕捞

 
智利渔船以工业化模式捕捞竹荚鱼英语Trachurus的场景。

过度捕捞(也简称为过渔)是指从水体捕获某种水产的速度大于该物种自然补充其数量的速度(即从现有水产资源中超额捕捞的行为),导致当地的物种数量越来越少。过度捕捞可发生在任何水体,例如池塘湿地河流湖泊或海,最终发生资源枯竭、生物增长率降低和生物量水准单薄。持续过度捕捞会导致严重的资源匮乏,鱼类达到种群贫乏英语depensation境界,即无法生存。某些形式的过度捕捞,例如针对鲨鱼,已导致整个海洋生态系统的混乱。[17] 过度捕捞的类型有:成长过渔(growth overshing)、[18]加入过渔(Recruitment overfishing)、[19]生态系统过渔(ecosystem overfishing)[20]

渔业从过度捕捞中恢复的能力取决于其环境承载力和生态多样性是否适合。物种组成发生巨大变化可能导致生态系统转变英语Regime shifts,由其他平衡能量流造成的物种组成会与原始鱼类枯竭之前存在的物种组成不同。例如,一旦鳟鱼被过度捕捞,鲤鱼会利用竞争平衡的变化予以取代,让鳟鱼无法重新建立起原来的数量。

自全球渔业企业在20世纪50年代发展以来,集约化捕捞已从原来集中在少数区域扩展到几乎所有渔场。底拖网捕捞在海底的刮擦对珊瑚、海绵和其他生长缓慢的海底生物界物种具有毁灭性,它们无法迅速恢复,而这些海底区域又是商用渔业物种的栖息地。这种破坏把生态系统的功能改变,并可能永久改变物种的组成和生物多样性。混获是捕鱼过程中意外捕获的其他物种,纵然将其送返海洋,多数会因受伤或是暴露而死亡。混获的数量约占所有渔获物的4分之1。在捕的作业,混获物比捕获的虾要多5倍。

粮农组织在2020年发表的一份报告指出,“世界海洋渔业在2017年的捕获,有34%的种群被归类受到过度捕捞”。[21]:54缓解这情形的方案有:政府监管、取消补贴、尽量降低捕捞影响、以水产养殖取代和提高消费者的认知。

生态破坏

过度捕捞会导致海洋生态系服务受到滥用。[22]捕捞会对鱼类种群造成负面生理和心理影响,包括压力水准增加和身上卡著鱼钩的身体伤害。[23]当超过阈值时,环境会出现迟滞现象[22]更具体地说,在黑海海洋生态系统中就发现有因过度捕捞和各种人类活动而造成的不利结果。[24]由于关键鱼类(如软棘鱼科(几种方头鱼)和石斑鱼,因其具有生态系统工程师英语Ecosystem engineer的功能)受到过度捕捞,也会导致生态受到破坏。 [25]

针对特定、有市场需求的水产捕捞,也会把食物网破坏。像沙丁鱼鳀鱼等猎物型的鱼类被捕捞过多,会降低捕食者的食物来源。对位居蜂腰型食物链腰部的小型鱼类(wasp-waist species)[26]过度捕捞,会对整个生态系统造成影响。[27]但如果是针对捕食者(如鲑鱼鲔鱼)做过度捕捞,会导致猎物种群增加。

过度捕捞和海洋污染也会影响海洋储存碳的能力,而导致气候变化[28][29][30]储存在海床沉积物中的碳会因受到底拖网的扰动而释放进入大气。[31][32]

捕捞引发的进化

捕捞引发的进化(也称捕捞对进化的影响)是由捕捞压力产生的水生物种进化(例如身体大小或生长情况)的影响。这情况由选择性捕捞造成,较大的鱼容易被捕获。此外,基于保护幼鱼的设想而制定的可捕捞最小的鱼英语minimum landing size规则,通常受到赦免的是生长缓慢的个体,如此也会对种群产生许多负面影响。

混获

 
无意中被漂流渔网缠绕致死的海鸟

所谓混获,是渔获物中不属于选项的水产,[33]通常由渔具操作不妥而发生,[33]混获会被廉售,或是遭到抛弃(因而偶尔有丢弃物英语discards的称法)。即使是休闲捕鱼者也会在钓场岸边丢弃大量非选项和甚至是选项的鱼类。每捕获1磅选项物种,就会捕获多达5磅的混获。 [34]全球每年捕获的鱼类中有多达40%(630亿磅)被丢弃,每年有多达650,000头鲸、海豚海豹因渔船而致死。[35][36]

捕鲨割鳍和扑杀鲨鱼

捕鲨割鳍

所谓捕鲨割鳍是从鲨鱼身上割下鳍,并将其余抛回海中的行为。抛入海的鲨鱼通常还活着,因失去鳍,[37][38]而失去游泳能力,最后沉入海底因窒息而亡,或被其他捕食者吃掉。[39]研究显示每年有7,300万条鲨鱼受此种对待,[40]但科学家们指出实际数字会更高,估计每年受害的鲨鱼大约有1亿条。[41]如此大量鲨鱼死亡对海洋生态系统产生灾难性的危害。(参见捕鲨割鮨#影响)[40]

扑杀鲨鱼

所谓扑杀鲨鱼是透过政府运作的“鲨鱼控制”计划来猎杀鲨鱼。[42]这些项目的目的是为降低鲨鱼袭击人类的风险,但环保主义者表示如此做并不能降低鲨鱼袭击的风险,并说扑杀鲨鱼会损害海洋生态系统。[43][44]目前在澳大利亚新南威尔士州昆士兰州南非夸祖鲁-纳塔尔省和法属留尼汪仍有扑杀鲨鱼的措施。[44][45][46]昆士兰州的“鲨鱼控制”计划在1962年至2018年间约杀死50,000条鲨鱼,使用的是防鲨网防鲨浮标线英语Drum line (shark control)等致命装置。[47][44]但也有为数不低的其他动物,如海龟和海豚成为混获而致命。[48]昆士兰州的此类计划被称为“过时、残忍和无效”。[49]新南威尔士州的鲨鱼扑杀计划(使用防鲨网)已杀死数以千计的鲨鱼、海龟、海豚和鲸。[44]夸祖鲁-纳塔尔省的扑杀鲨鱼计划在30年内杀死超过33,000条鲨鱼。[45]

海洋废弃物

 
受幽灵渔网缠绕住的海龟。

最近的研究显示浮标、钓线和渔网等渔业废弃物占海洋中大型塑料废弃物的3分之2以上(按质量计算),[50]太平洋垃圾带中,仅渔网一项在废弃物中占比就至少有46%。[51]同样在韩国海岸发现的塑料废弃物中,主要是渔业废弃物。[52]海洋生物与这些废弃物间有两种相互作用的方式:纠缠(缠绕或是困住动物),或是摄入(有意或无意)。[53]两者均有害。[53]海洋中的旧渔网或拖网形成的废弃物通常与幽灵捕鱼(ghost fishing)等现像有关,不断有幽灵渔网缠绕和困住海洋生物。[54]日本南部对章鱼所做研究指出,该地区渔场每年章鱼因此死亡的数目估计为212,000–505,000只,多数是因幽灵捕鱼所造成。[55]跟踪垃圾和监测人类处理废弃物的流向,尤其是与渔业有关的,是种减少海洋废弃物的方法。[54][56]使用无人操作清理废弃物船等具有技术或机械上创新的机具,可进一步减少海洋废弃物的数量。 [54][56]

休闲捕鱼的影响

休闲捕鱼是为娱乐或是竞赛而进行的捕鱼。而商业捕鱼是为谋利而做的捕捞,通常都是大规模从事。两者都会对环境产生不同的影响。[57]

许多人认为休闲捕鱼对鱼类没太大影响,但实际上此活动的捕获量占美国整体捕捞量近4分之1,且其中许多是具有商业价值的鱼类。[58]休闲捕鱼对海洋废弃物、过度捕捞和鱼类死亡率的影响最大。休闲捕鱼中的释放后死亡率与商业性捕鱼中混获所造成的影响相同。[57]研究显示在全球改善休闲捕鱼管理,可产生与改革商业捕鱼规模相同的社会效益。 [59]

钓获放流

有几种做法可减少钓获放流对环境造成的负面影响,包括:钓鱼期间使用的鱼钩的持续时间、时机和鱼钩类型。[23]为提高这种活动的有效性并减轻其负面影响,针对特定物种要采用不同的指南。[23]这类指南针对特定鱼类的所在、交配和迁徙周期而制定特殊的规则。[23]在2005年做的一项统合分析,发现钓获放流造成鱼类的平均死亡率为18%(因物种而异)。[60]在休闲捕鱼活动中有广泛采钓获放流的风气,此有利于让鱼类种群维持于稳定水准,而让商业捕鱼能获得社会和经济效益。[61]把钓获放流与生物遥测英语biotelemetry结合运用,让研究者能取得此捕捞方式对鱼类的生物学影响,以便制定未来的保护工作和补救措施。[61]

对策

渔业管理

增加鱼类种群数量,把不利环境影响和生态干扰程度降低的一种方法是采传统的渔业管理[62][63]传统渔业管理本质上涵盖有渔业管理的各个方面,但也包含对所用的渔具和设定捕捞量限额英语catch share[62]把社区引入参与保护工作以及为禁渔区做清楚的定义。[63][64]要执行前述措施,就得先做好资料收集及分析的工作。[63]

以生态系统为中心英语Ecosystem-based management的渔业管理是另一种用作鱼类保护和修复影响的方法。[62][65]这种以生态系统为中心的管理不单关注特定海洋生物的保护,而是对环境中的各种鱼类作管理。[62][65]为增进此类型的管理,重要的是要减少进入障碍,以便更易为全球渔业采用。[62]

许多政府和政府间机构均实施目的在遏制捕捞对环境影响的管理政策。渔业保护的目的是控制人类活动,避免完全减少鱼类种群或消除整个水生环境的结果。施行法律包括设定特定物种总捕获量的配额、工作量配额(例如出海天数)、特定区域准入的船只数量,以及季节性限制。

在2008年曾对个人捕捞配额英语Individual fishing quota做过大规模研究,并未得到有力证据证明这种配额方式有助于防止渔产崩溃和把衰退的鱼类种群恢复。[66][67][68][69]

水产养殖

 
位于希腊尤比亚岛沿海城市阿马林多斯英语Amarynthos的海上水产养殖作业。

水产养殖被提议当作传统捕捞野生鱼类英语wild fishery更具可持续的替代。但水产养殖又被发现对附近的野生鱼类有负面影响(例如把疾病和寄生虫传染给野生的洄游鱼类,由于通常养殖采密集方式,会有多余的营养物质及鱼类排泄物污染饲养环境及附近区域,而养殖场密布的塑料管线会扰乱海岸的生态系统),[70][71]而饲养如鲑鱼等掠食性鱼类,又需依赖掺有由捕获的饲料鱼所制造的鱼粉鱼油的饲料。[72]

养殖鱼类逃离围栏的情况常会发生,[22][73]而导致非本地物种被引入当地自然环境。养殖品种与同类野生鱼类杂交后,可能会导致其后代适应性下降。[25]

海洋保护区

设立海洋保护区有助于促进环境保护和海洋野生动物安全。[74]保护区本身是透过环境保护计划或政策而建立。[74]珊瑚礁是应用海洋保护计划而建立保护区的众多例子之一。[74]在美国、加勒比地区菲律宾埃及也有设立海洋保护区的倡议。[74]为减轻捕捞对海洋环境的负面影响,设立海洋保护区可创造、加强和重新引入生物多样性,[74][75]其主要好处是为栖息地和当地物种产生正面的影响。[74]

参见

相关书籍

参考文献

  1. ^ Frouz, Jan; Frouzová, Jaroslava. Applied Ecology. 2022 [2023-07-05]. ISBN 978-3-030-83224-7. S2CID 245009867. doi:10.1007/978-3-030-83225-4. (原始内容存档于2022-01-29) (英国英语). 
  2. ^ Food and Agriculture Organization of the United Nations (FAO). Fishery and Aquaculture Statistics 2017 (PDF). 2019. (原始内容存档 (PDF)于2019-10-26). 
  3. ^ Global population growth, wild fish stocks, and the future of aquaculture | Shark Research & Conservation Program (SRC) | University of Miami. sharkresearch.rsmas.miami.edu. [2018-04-02]. 
  4. ^ Laville, Sandra. Dumped fishing gear is biggest plastic polluter in ocean, finds report. The Guardian. 2019-11-06 [2022-05-10]. (原始内容存档于2022-04-22) (英语). 
  5. ^ Magazine, Smithsonian; Kindy, David. With Ropes and Nets, Fishing Fleets Contribute Significantly to Microplastic Pollution. Smithsonian Magazine. [2022-05-10]. (原始内容存档于2022-05-10) (英语). 
  6. ^ Worm, Boris; et al. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science. 2006-11-03, 314 (5800): 787–790. Bibcode:2006Sci...314..787W. PMID 17082450. S2CID 37235806. doi:10.1126/science.1132294. 
  7. ^ Juliet Eilperin. Seafood Population Depleted by 2048, Study Finds. The Washington Post. 2006-11-02 [2023-07-05]. (原始内容存档于2018-09-14). 
  8. ^ Michael Clark; Tilman, David. Global diets link environmental sustainability and human health. Nature. November 2014, 515 (7528): 518–522. Bibcode:2014Natur.515..518T. ISSN 1476-4687. PMID 25383533. S2CID 4453972. doi:10.1038/nature13959. 
  9. ^ 9.0 9.1 9.2 Tahiluddin; Sarri, Jurmin H. An Overview of Destructive Fishing in the Philippines. ACTA NATURA SCIENTIA. September 2022 [2023-02-17 2023-11-16]. doi:10.29329/actanatsci.2022.352.04.  已忽略未知参数|First1=(建议使用|first1=) (帮助);
  10. ^ 10.0 10.1 Major, Robert N.; Taylor, David I.; Connor, Stephen; Connor, Geoffrey; Jeffs, Andrew G. Factors affecting bycatch in a developing New Zealand scampi potting fishery. Fisheries Research. February 2017, 186: 55–64. doi:10.1016/j.fishres.2016.08.005 (英语). 
  11. ^ Reports. 2017-01-29 [2008-02-04]. (原始内容存档于2006-09-09). 
  12. ^ Pusceddua, Antonio; Bianchellia, Silvia; Martínb, Jacobo; Puigb, Pere; Palanquesb, Albert; Masquéd, Pere; Danovaroa, Roberto. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America. 2014, 111 (24): 8861–8866. ISSN 0027-8424. JSTOR 23802017. PMC 4066481 . PMID 24843122. doi:10.1073/pnas.1405454111 . 
  13. ^ Blulab. Destructive Fishing Practices and Bycatch - Ocean Threats | Slow Fish - Local Sustainable Fish. slowfood.com. [2018-04-02]. (原始内容存档于2018-04-03). 
  14. ^ Blulab. Destructive Fishing Practices and Bycatch - Ocean Threats | Slow Fish - Local Sustainable Fish. slowfood.com. [2018-04-02]. (原始内容存档于2018-04-03). 
  15. ^ 15.0 15.1 Jennings, Simon; Kaiser, Michel J. The effects of fishing on marine ecosystems (PDF) 34. 1998: 201–352. ISBN 9780120261345. doi:10.1016/S0065-2881(08)60212-6.  |journal=被忽略 (帮助)
  16. ^ FAO. Code of Conduct for Responsible Fisheries. www.fao.org. [2018-03-30]. (原始内容存档于2019-02-13). 
  17. ^ Scales, Helen. Shark Declines Threaten Shellfish Stocks, Study Says. National Geographic News. 2007-03-29 [2012-05-01]. (原始内容存档于2017-01-21). 
  18. ^ 何謂成長過漁(Growth overfishing)?. 行政院农业委员会水产试验所. [2023-02-17]. 
  19. ^ 何謂加入過漁(Recruitment overfishing)?. 行政院农业委员会水产试验所. [2023-02-17]. 
  20. ^ 何謂生態系過漁(Ecosystem overfishing)?. 行政院农业委员会水产试验所. [2023-02-17]. 
  21. ^ The State of World Fisheries and Aquaculture 2020. FAO. 2020 [2023-07-05]. ISBN 978-92-5-132692-3. S2CID 242949831. doi:10.4060/ca9229en. hdl:10535/3776. (原始内容存档于2021-10-07) (英语). 
  22. ^ 22.0 22.1 22.2 Daskalov, Georgi M.; Grishin, Alexander N.; Rodionov, Sergei; Mihneva, Vesselina. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences. 2007-06-19, 104 (25): 10518–10523. Bibcode:2007PNAS..10410518D. PMC 1965545 . PMID 17548831. doi:10.1073/pnas.0701100104 . 
  23. ^ 23.0 23.1 23.2 23.3 Cooke, Steven J.; Suski, Cory D. Do we need species-specific guidelines for catch-and-release recreational angling to effectively conserve diverse fishery resources?. Biodiversity & Conservation. 2005-05-01, 14 (5): 1195–1209. ISSN 0960-3115. S2CID 16894387. doi:10.1007/s10531-004-7845-0. 
  24. ^ Daskalov, Georgi M. Overfishing drives a trophic cascade in the Black Sea. Marine Ecology Progress Series. 2002, 225: 53–63. Bibcode:2002MEPS..225...53D. ISSN 0171-8630. doi:10.3354/meps225053 . 
  25. ^ 25.0 25.1 Coleman, Felicia C.; Williams, Susan L. Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends in Ecology & Evolution. 2002, 17 (1): 40–44. doi:10.1016/s0169-5347(01)02330-8. 
  26. ^ Andrew Bakun. Wasp-waist populations and marine ecosystem dynamics: Navigating the ‘‘predator pit’’ topographies (PDF). Science @ Direct. [2023-02-18]. 
  27. ^ Cury, Bakun, Crawford, Jarre, Quinones, Shannon, Verheye. Small pelagics in upwelling systems: patterns of interaction and structural changes in wasp-waist ecosystems.. ICES Journal of Marine Science. 2000, 57 (3): 603–618. doi:10.1006/jmsc.2000.0712 . 
  28. ^ Harvey, Fiona. Tackling degraded oceans could mitigate climate crisis - report. The Guardian. 2019-12-04 [2019-12-07]. ISSN 0261-3077. (原始内容存档于2023-03-27) (英国英语). 
  29. ^ Sala, Enric; Mayorga, Juan; Bradley, Darcy; Cabral, Reniel B.; Atwood, Trisha B.; Auber, Arnaud; Cheung, William; Costello, Christopher; Ferretti, Francesco; Friedlander, Alan M.; Gaines, Steven D.; Garilao, Cristina; Goodell, Whitney; Halpern, Benjamin S.; Hinson, Audra. Protecting the global ocean for biodiversity, food and climate. Nature. 2021-03-17, 592 (7854): 397–402. ISSN 1476-4687. PMID 33731930. S2CID 232301777. doi:10.1038/s41586-021-03371-z (英语). 
  30. ^ Mariani, Gaël; Cheung, William W. L.; Lyet, Arnaud; Sala, Enric; Mayorga, Juan; Velez, Laure; Gaines, Steven D.; Dejean, Tony; Troussellier, Marc; Mouillot, David. Let more big fish sink: Fisheries prevent blue carbon sequestration—half in unprofitable areas. Science Advances. 2020-10-30, 6 (44): eabb4848. ISSN 2375-2548. PMC 7608781 . PMID 33115738. doi:10.1126/sciadv.abb4848 (英语). 
  31. ^ Seafloor Protection. Project Drawdown. 2022-04-25 [2022-09-02] (英语). 
  32. ^ McVeigh, Karen. Bottom trawling releases as much carbon as air travel, landmark study finds. The Guardian. 2021-03-17 [2022-09-02] (英语). 
  33. ^ 33.0 33.1 Suuronen, Petri; Chopin, Francis; Glass, Christopher; Løkkeborg, Svein; Matsushita, Yoshiki; Queirolo, Dante; Rihan, Dominic. Low impact and fuel efficient fishing—Looking beyond the horizon. Fisheries Research. May 2012,. 119-120: 135–146. doi:10.1016/j.fishres.2011.12.009 (英语). 
  34. ^ Discards and bycatch in Shrimp trawl fisheries.. www.fao.org. [2019-08-30]. (原始内容存档于2019-03-11). 
  35. ^ Keledjian, Amanda. WASTED CATCH: UNSOLVED PROBLEMS IN U.S. FISHERIES (PDF). [2023-07-05]. (原始内容 (PDF)存档于2020-12-22). 
  36. ^ Goldenberg, Suzanne. America's nine most wasteful fisheries named. The Guardian. 2014-03-20 [2019-08-30]. ISSN 0261-3077. 
  37. ^ Schindler, D.E., Essington, T.E., Kitchell, J.F., Boggs, C. and Hilborn, R. (2002) http://onlinelibrary.wiley.com/wol1/doi/10.1890/1051-0761(2002)012%5B0735:SATFIO%5D2.0.CO;2/abstract "Sharks and tunas: fisheries impacts on predators with contrasting life histories". Ecological Applications, 12 (3): 735–748. doi:10.1890/1051-0761(2002)012[0735:SATFIO]2.0.CO;2
  38. ^ Spiegel, J. (2000) http://heinonline.org/HOL/LandingPage?handle=hein.journals/bcic24&div=22&id=&page=页面存档备份,存于互联网档案馆) "Even Jaws deserves to keep his fins: outlawing shark finning throughout global waters". Boston College International and Comparative Law Review, 24 (2): 409–438.
  39. ^ Urbina, Ian. Palau vs. Poachers, The New York Times. The New York Times. 2016. (原始内容存档于2022-01-05). 
  40. ^ 40.0 40.1 https://www.livescience.com/1027-shark-slaughter-73-million-killed-year.html页面存档备份,存于互联网档案馆Shark Slaughter: 73 Million Killed Each Year. Ker Than. 2006-09-26. Retrieved 2019-01-01.
  41. ^ https://ocean.si.edu/ocean-life/sharks-rays/shark-finning-sharks-turned-prey页面存档备份,存于互联网档案馆) Ocean.si.edu. Shark finning: Sharks turned prey". Caty Fairclough. Retrieved 2019-01-01.
  42. ^ http://www.abc.net.au/news/2013-12-22/can-governments-protect-people-from-killer-sharks/5158880页面存档备份,存于互联网档案馆) "Can governments protect people from killer sharks?". ABC News. 2013-12-22. Retrieved 2019-01-01.
  43. ^ http://pursuit.unimelb.edu.au/articles/sharks-how-a-cull-could-ruin-an-ecosystem页面存档备份,存于互联网档案馆) Schetzer, Alana. "Sharks: How a cull could ruin an ecosystem". puruit.unimelb.edu.au. Retrieved 2019-01-01.
  44. ^ 44.0 44.1 44.2 44.3 https://web.archive.org/web/20181002102324/https://www.marineconservation.org.au/pages/shark-culling.html "Shark Culling". marineconservation.org.au. Archived from the original on 2018-10-02. Retrieved 2019-01-01.
  45. ^ 45.0 45.1 http://www.sharkangels.org/index.php/media/news/157-shark-nets 互联网档案馆存档,存档日期2018-09-19. "Shark Nets". sharkangels.org. Archived from the original on 2018-09-19. Retrieved 2019-01-01.
  46. ^ https://www.nzherald.co.nz/world/news/article.cfm?c_id=2&objectid=11847758页面存档备份,存于互联网档案馆) "Man Who Devoted Life To Sharks, Killed Off The Coast Of Reunion". nzherald.co.nz. 2017-04-30. Retrieved 2019-01-01.
  47. ^ https://www.news.com.au/technology/science/animals/aussie-shark-population-is-staggering-decline/news-story/49e910c828b6e2b735d1c68e6b2c956e页面存档备份,存于互联网档案馆) Aussie shark population in staggering decline. Rhian Deutrom. 2018-12-04. Retrieved 2018-01-01.
  48. ^ http://www.afd.org.au/news-articles/queenslands-shark-control-program-has-snagged-84000-animals页面存档备份,存于互联网档案馆) Action for Dolphins. Queensland’s Shark Control Program Has Snagged 84,000 Animals. Thom Mitchell. 2015-11-20. Retrieved 2019-01-01.
  49. ^ https://www.ntd.tv/2018/09/04/video-endangered-hammerhead-sharks-dead-on-drum-line-in-great-barrier-reef/ 互联网档案馆存档,存档日期2018-09-19. Phillips, Jack (2018-09-04). "Video: Endangered Hammerhead Sharks Dead on Drum Line in Great Barrier Reef". ntd.tv. Retrieved 2019-01-01.
  50. ^ Eriksen, Marcus; Lebreton, Laurent C. M.; Carson, Henry S.; Thiel, Martin; Moore, Charles J.; Borerro, Jose C.; Galgani, Francois; Ryan, Peter G.; Reisser, Julia. Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLOS ONE. 2014-12-10, 9 (12): e111913. Bibcode:2014PLoSO...9k1913E. PMC 4262196 . PMID 25494041. doi:10.1371/journal.pone.0111913 . 
  51. ^ Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports. 2018-03-22, 8 (1): 4666. Bibcode:2018NatSR...8.4666L. PMC 5864935 . PMID 29568057. doi:10.1038/s41598-018-22939-w. 
  52. ^ Jang, Yong Chang; Lee, Jongmyoung; Hong, Sunwook; Lee, Jong Su; Shim, Won Joon; Song, Young Kyoung. Sources of plastic marine debris on beaches of Korea: More from the ocean than the land. Ocean Science Journal. 2014-07-06, 49 (2): 151–162. Bibcode:2014OSJ....49..151J. ISSN 1738-5261. S2CID 85429593. doi:10.1007/s12601-014-0015-8. 
  53. ^ 53.0 53.1 Laist, David W. Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records. Coe, James M.; Rogers, Donald (编). Marine Debris. Springer Series on Environmental Management. New York, NY: Springer. 1997: 99–139. ISBN 9781461384885. doi:10.1007/978-1-4613-8486-1_10. 
  54. ^ 54.0 54.1 54.2 Sigler, Michelle. The Effects of Plastic Pollution on Aquatic Wildlife: Current Situations and Future Solutions (PDF). Water, Air, & Soil Pollution. 2014-11-01, 225 (11): 2184. Bibcode:2014WASP..225.2184S. ISSN 0049-6979. S2CID 51944658. doi:10.1007/s11270-014-2184-6. 
  55. ^ Matsuoka, Tatsuro; Nakashima, Toshiko; Nagasawa, Naoki. A review of ghost fishing: scientific approaches to evaluation and solutions (PDF). Fisheries Science. 2005-07-01, 71 (4): 691. ISSN 0919-9268. S2CID 6539536. doi:10.1111/j.1444-2906.2005.01019.x. 
  56. ^ 56.0 56.1 Gregory, Murray R. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2009-07-27, 364 (1526): 2013–2025. ISSN 0962-8436. PMC 2873013 . PMID 19528053. doi:10.1098/rstb.2008.0265. 
  57. ^ 57.0 57.1 J., Cooke, Steven; G., Cowx, Ian. The Role of Recreational Fishing in Global Fish Crises. BioScience. 2004-09-01, 54 (9): 857. ISSN 0006-3568. doi:10.1641/0006-3568(2004)054[0857:TRORFI]2.0.CO;2 . 
  58. ^ Study In Science Reveals Recreational Fishing Takes Big Bite Of Ocean Catch. ScienceDaily. [2018-04-02]. (原始内容存档于2021-11-17). 
  59. ^ Joshua K. Abbott, Patrick Lloyd-Smith, Daniel Willard, and Wiktor Adamowicz. Status-quo management of marine recreational fisheries undermines angler welfare. PNAS. 2018-09-04, 115 (36): 8948–8953. PMC 6130401 . PMID 30127021. doi:10.1073/pnas.1809549115 . 
  60. ^ Bartholomew, Aaron; Bohnsack, James A. A Review of Catch-and-Release Angling Mortality with Implications for No-take Reserves. Reviews in Fish Biology and Fisheries. 2005-02-01, 15 (1): 129–154. ISSN 1573-5184. S2CID 2323279. doi:10.1007/s11160-005-2175-1. 
  61. ^ 61.0 61.1 Donaldson, Michael R.; Arlinghaus, Robert; Hanson, Kyle C.; Cooke, Steven J. Enhancing catch-and-release science with biotelemetry. Fish and Fisheries. 2008-03-01, 9 (1): 79–105. CiteSeerX 10.1.1.589.1499 . ISSN 1467-2979. doi:10.1111/j.1467-2979.2007.00265.x. 
  62. ^ 62.0 62.1 62.2 62.3 62.4 Hilborn, Ray; Ovando, Daniel. Reflections on the success of traditional fisheries management. ICES Journal of Marine Science. 2014-08-01, 71 (5): 1040–1046. ISSN 1054-3139. doi:10.1093/icesjms/fsu034 . 
  63. ^ 63.0 63.1 63.2 Hilborn, Ray; Ovando, Daniel. Reflections on the success of traditional fisheries management. ICES Journal of Marine Science. 2014-08-01, 71 (5): 1040–1046. ISSN 1054-3139. doi:10.1093/icesjms/fsu034 . 
  64. ^ Worm, Boris; Hilborn, Ray; Baum, Julia K.; Branch, Trevor A.; Collie, Jeremy S.; Costello, Christopher; Fogarty, Michael J.; Fulton, Elizabeth A.; Hutchings, Jeffrey A.; Jennings, Simon; Jensen, Olaf P.; Lotze, Heike K.; Mace, Pamela M.; McClanahan, Tim R.; Minto, Cóilín. Rebuilding Global Fisheries. Science. 2009-07-31, 325 (5940): 578–585. ISSN 0036-8075. doi:10.1126/science.1173146 (英语). 
  65. ^ 65.0 65.1 Pikitch, Ellen K. The Risks of Overfishing. Science. 2012-10-26, 338 (6106): 474–475. Bibcode:2012Sci...338..474P. ISSN 0036-8075. PMID 23112316. S2CID 206545165. doi:10.1126/science.1229965. 
  66. ^ Costello, Christopher; Gaines, Steven D and Lynham, John (2008) Can Catch Shares Prevent Fisheries Collapse? Portuguese Web Archive的存档,存档日期2016-05-15 Science Vol 321, No 5896, pp 1678–1681.
  67. ^ New Scientist: Guaranteed fish quotas halt commercial free-for-all. [2023-07-05]. (原始内容存档于2021-10-31). 
  68. ^ A Rising Tide: Scientists find proof that privatising fishing stocks can avert a disaster页面存档备份,存于互联网档案馆) The Economist, 18th Sept, 2008.
  69. ^ New study offers solution to global fisheries collapse页面存档备份,存于互联网档案馆) Eureka alert.
  70. ^ PLoS Biology - Can Farmed and Wild Salmon Coexist?
  71. ^ Do the Benefits of Aquaculture Outweigh Its Negative Impacts?. KQED. 2017-03-15 [2023-02-19]. 
  72. ^ Seafood Choices Alliance (2005) It's all about salmon 互联网档案馆存档,存档日期2015-09-24.
  73. ^ McGinnity, Philip; Prodöhl, Paulo; Ferguson, Andy; Hynes, Rosaleen; Maoiléidigh, Niall ó; Baker, Natalie; Cotter, Deirdre; O'Hea, Brendan; Cooke, Declan; Rogan, Ger; Taggart, John; Cross, Tom. Fitness reduction and potential extinction of wild populations of Atlantic salmon,Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2003-12-07, 270 (1532): 2443–2450. ISSN 0962-8452. doi:10.1098/rspb.2003.2520. 
  74. ^ 74.0 74.1 74.2 74.3 74.4 74.5 Roberts, Callum M.; Polunin, Nicholas V. C. Marine Reserves: Simple Solutions to Managing Complex Fisheries?. Ambio. 1993, 22 (6): 363–368. JSTOR 4314106. 
  75. ^ Aburto-Oropeza, Octavio; Erisman, Brad; Galland, Grantly R.; Mascareñas-Osorio, Ismael; Sala, Enric; Ezcurra, Exequiel. Large Recovery of Fish Biomass in a No-Take Marine Reserve. PLOS ONE. 2011-08-12, 6 (8): e23601. Bibcode:2011PLoSO...623601A. ISSN 1932-6203. PMC 3155316 . PMID 21858183. doi:10.1371/journal.pone.0023601 . 

进一步阅读

外部链接