华林问题
此条目需要扩充。 (2013年2月14日) |
此条目内容疑欠准确,有待查证。 (2015年2月15日) |
华林问题(英语:Waring's problem)是数论中的问题之一。1770年,爱德华·华林猜想,对于每个非1的正整数k,皆存在正整数g(k),使得每个正整数都可以表示为g(k)个非负整数的k次方之和。
与四平方和定理之关系
在三世纪时,数学家丢番图首先提出“是否每一个正整数都是四个平方数之和”的问题。1730年,欧拉开始研究该问题,但未得出证明。[1]
第一个给出完整证明的是拉格朗日,他的证明用了欧拉的一个公式:
后来欧拉也给出另一证明。[1]
华林猜想
1770年,华林发表了《代数沉思录》(Meditationes Algebraicae),其中说,每一个正整数至多是9个立方数之和;至多是19个四次方之和[1]。还猜想,每一个正整数都是可以表示成为至多r个k次幂之和,其中r依赖于k。
研究进展
1909年,大卫·希尔伯特首先用复杂的方法证明了g(k)的存在性。1943年,U.V.林尼克给出了关于g(k)存在性的另一个证明。然而,尽管g(k)的存在性已被证明,人们尚且无法知晓g(k)与k之间的关系。华林自己推测g(2)=4,g(3)=9,g(4)=19。
1770年,拉格朗日证明了四平方和定理,指出g(2)=4。1909年亚瑟·韦伊费列治证明了g(3)=9。
1859年,刘维尔证明了g(4)<=53,他的想法是借助一个恒等式(Liouville polynomial identity):
后来哈代和李特尔伍德得到g(4)<=21, 1986年巴拉苏布拉玛尼安证明了g(4)=19。1896年马力特得到g(5)<=192;1909年韦伊费列治将结果改进为g(5)<=59;1964年陈景润证明了g(5)=37。[2]
事实上,莱昂哈德·欧拉之子J.A.欧拉猜想: (" "表示对"q"向下取整)(也就是只要看小于3k的正整数当中,最多只需要几个k次方数的和,就可以了,例如k=4的情形,小于81的数字当中,最多的就是79,需要19个四次方数,因此有g(4)=19)至1990年,对于6<=k<=471600000此式已经被计算机验证为正确。[3]
更强的问题
由于g(k)的值严重依赖于正整数较小时的情况[来源请求],人们提出了一个更强的问题,求对于每个充分大的正整数,可使它们分解为k次方数的个数G(k)。此问题进展较慢,至今G(3)仍无法确定。
其他推广
华林-哥德巴赫问题
陈述:对于任何一个正整数n,是否存在一个数k,使得每个充分大的整数都可以表示为k个质数的n次幂的和?
此问题在1938年已被华罗庚证明成立。
表法数问题
任给一个正整数都是可以表为四个平方数之和。进一步,给定一个正整数,表示成为四个平方数的不同表示法有多少种?这问题已由雅可比给出了解答。
但是,对于立方和,四次方和等等的情况,仍然非常困难。[来源请求]
不限于正整数
考虑用有理数的方幂和来表示正有理数。
参考资料
- ^ 1.0 1.1 1.2 吴振奎. 幾個與“形數”有關的問題 (PDF). 数学传播. 2005年3月, 29 (1): 64–74 [2015-02-15]. (原始内容存档 (PDF)于2016-03-04).
- ^ Weisstein, Eric W. (编). Waring's Problem. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
- ^ JM Kubina, MC Wunderlich. Extending Waring's conjecture to 471,600,000 (PDF). Mathematics of Computation. 1, (55): 815–820 [2015-02-14]. doi:10.1090/S0025-5718-1990-1035936-6. (原始内容存档 (PDF)于2019-11-12).