电磁超表面

电磁超表面磁超表面electromagnetic metasurface)、超表面metasurface)是指具有亚波长厚度的人造片材。亚波长尺度图案,可以有结构化,也可以没结构化。[1][2][3]

液态可调谐电磁超表面

电磁理论中超表面通过特定边界条件而不是三维空间的本构参数调制电磁波,这在天然材料超材料很常见。超表面也可以指超材料的二维对应物。[4][5]

还有2.5D超表面涉及三维自订其额外自由度功能。[6]

定义

研究人员以多种方式定义了超表面。

1,

“An alternative approach that has gained increasing attention in recent years deals with one- and two-dimensional (1D and 2D) plasmonic arrays with subwavelength periodicity, also known as metasurfaces. Due to their negligible thickness compared to the wavelength of operation, metasurfaces can (near resonances of unit cell constituents) be considered as an interface of discontinuity enforcing an abrupt change in both the amplitude and phase of the impinging light”.[7]

近年涉及具亚波长周期性的一维二维等离子体阵列一一“超表面”骎骎日上。由于与操作波长相比,超表面厚度可忽略不计,因此超表面(接近晶胞成分的共振)可视为不连续的界面,迫使撞击光的振幅和相位骤变。[7]

2,

“Our results can be understood using the concept of a metasurface, a periodic array of scattering elements whose dimensions and periods are small compared with the operating wavelength”.[8]

我们的结果可用超表面的概念理解,超表面是周期性散射元素阵列,其尺寸和周期与工作波长相比很小。[8]

3,

“Metasurfaces based on thin films”. A highly absorbing ultrathin film on a substrate can also be considered as a metasurface, with properties not occurring in natural materials.[3] Following this definition, the thin metallic films such as that in superlens英语superlens are also the early type of metasurfaces.[9]

“基于薄膜的超表面”。基板的高吸收性超薄膜也可认为是超表面,天然材料不存在其特性。[3]根据这定义,超透镜英语superlens金属薄膜也是早期超表面类型。[9]

历史

电磁超表面的研究由来已久。早在1902年,罗伯特·威廉斯·伍德英语Robert W. Wood就发现亚波长金属光栅反射光谱具有暗区。这现象命名为伍德异常,并引领在金属表面激发的特定电磁波,表面等离子体极化激元的发现[10]。随后,另一重要现象,列维-奇维塔关系发现了亚波长厚膜可导致电磁边界条件骤变。,[11]

一般来说,超表面可以包括一些传统微波频谱概念,例如频率选择表面(FSS)、阻抗片、甚至欧姆片。微波条件下,这些超表面的厚度可以远小于操作波长(例如,波长的1/1000),因为对于高导电金属来说,集肤深度可能很小。最近,一些新现象证明,如超表面能超宽频相干。结果表明,0.3nm薄膜可吸收射频微波太赫兹频率上的所有电磁波。 [12][13][14]

光学应用中,抗反射涂层英语anti-reflective coating也可以被视为一种简单的超表面,正如瑞利勋爵首先观察到的那样。

近年开发了几种新超表面,包括等离子体超表面[15][4][7][16][17]、基于几何相位的超表面[18][19]、基于阻抗片的超表面[20][21]和滑动对称超表面[22]

应用

超表面一重要应用是通过向入射波赋予局部梯度相移控制电磁波的波前,推广古代反射折射定律[18]这样,超表面可以用作平面透镜[23][24]、照明透镜[25]、平面全息图[26]、涡旋发生器[27]、光束偏转器、轴心等。[19][28]

除了梯度超表面透镜外,基于超表面的超透镜通过使用倏逝波提供了波前的另一种程度控制。利用超薄金属层中的表面等离子体,可以实现完美的成像和超分辨率光刻,这打破了所有光学透镜系统都受到衍射限制的普遍假设,这种现象称为衍射极限英语diffraction limit[29][30]

另一有前景的应用是在隐形技术领域。目标的雷达截面英语radar cross-section通常透过辐射吸收材料英语radiation-absorbent material或透过目标的特定形状缩小,以将散射能量重新引导远来源。不幸是辐射吸收材料英语radiation-absorbent material频带功能很窄,限制了目标空气动力学性能。但已合成超表面可使用任一阵列理论或广义斯涅耳定律[31][32]将散射能量从源重定向[33][34][35]。这使得目标具有空气动力学上有利的形状并减少降低目标雷达截面英语radar cross-section

超表面还可以与光波导集成,控制引导电磁波。[36][37]可以支援元波导英语meta-waveguide的应用,例如集成波导模式转换器[37]、结构光生成[38][39]、多功能多路复用器[40][41]和光子神经网络[42]

此外,超表面还应用于电磁吸收器、偏振转换器和光谱滤光片。超表面赋能的新型生物成像和生物感测设备也已出现并被报导。[43][44][45][46]

对于许多基于光学的生物成像设备,其体积和沉重的物理重量限制了它们在临床环境中的使用。[47][48]

模拟

为有效地分析这种平面光学超表面,基于棱镜的算法允许平面几何形状最佳的三角棱柱空间离散化。与传统四面体方法相比,基于棱镜算法具更少元素,带来更高计算效率。[49]模拟工具已在线发布,用户能用自定义图元图案高效分析超表面。[50]

光学特性

因为所涉及光学特性通常包括相位偏振特性,表征光域中的超表面需要先进的成像方法。2020年的研究表明,向量叠印法英语ptychography成像计算成像方法似乎非常相关。即使在大型标本上也将钟斯矩阵映射与微观横向分辨率相结合。[51]

参见


参考

  1. ^ Bomzon, Ze’ev; Kleiner, Vladimir; Hasman, Erez. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters. 2001-09-15, 26 (18): 1424–1426 [2024-04-29]. Bibcode:2001OptL...26.1424B. ISSN 1539-4794. PMID 18049626. doi:10.1364/OL.26.001424. (原始内容存档于2024-04-29) (英语). 
  2. ^ Bomzon, Ze’ev; Biener, Gabriel; Kleiner, Vladimir; Hasman, Erez. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters. 2002-07-01, 27 (13): 1141–1143 [2024-04-29]. Bibcode:2002OptL...27.1141B. ISSN 1539-4794. PMID 18026387. doi:10.1364/OL.27.001141. (原始内容存档于2024-04-22) (英语). 
  3. ^ 3.0 3.1 3.2 Yu, Nanfang; Capasso, Federico. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13 (2): 139–150. Bibcode:2014NatMa..13..139Y. PMID 24452357. doi:10.1038/nmat3839. 
  4. ^ 4.0 4.1 Zeng, S.; et al. Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Advanced Materials. 2015, 27 (40): 6163–6169. Bibcode:2015AdM....27.6163Z. PMID 26349431. S2CID 205261271. doi:10.1002/adma.201501754. hdl:20.500.12210/45908 . 
  5. ^ Quevedo-Teruel, O.; et al. Roadmap on metasurfaces. Journal of Optics. 2019, 21 (7): 073002. Bibcode:2019JOpt...21g3002Q. S2CID 198449951. doi:10.1088/2040-8986/ab161d . hdl:10016/33235 . 
  6. ^ Solomonov, A.I.; et al. 2.5D switchable metasurfaces. Optics & Laser Technology. 2023, 161: 109122. Bibcode:2023OptLT.16109122S. S2CID 255887266. doi:10.1016/j.optlastec.2023.109122. 
  7. ^ 7.0 7.1 7.2 Pors, Anders; Bozhevolnyi, Sergey I. Plasmonic metasurfaces for efficient phase control in reflection. Optics Express. 2013, 21 (22): 27438–27451. Bibcode:2013OExpr..2127438P. PMID 24216965. doi:10.1364/OE.21.027438 . 
  8. ^ 8.0 8.1 Li, Ping-Chun; Zhao, Yang; Alu, Andrea; Yu, Edward T. Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface. Appl. Phys. Lett. 2011, 99 (3): 221106. Bibcode:2011ApPhL..99c1106B. doi:10.1063/1.3614557. 
  9. ^ 9.0 9.1 Pendry, J. B. Negative Refraction Makes a Perfect Lens (PDF). Physical Review Letters. 2000, 85 (18): 3966–9 [2015-05-21]. Bibcode:2000PhRvL..85.3966P. PMID 11041972. S2CID 25803316. doi:10.1103/PhysRevLett.85.3966. (原始内容 (PDF)存档于2016-04-18). 
  10. ^ Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. Lond. 1902, 18 (1): 269–275. Bibcode:1902PPSL...18..269W. doi:10.1088/1478-7814/18/1/325. 
  11. ^ Senior, T. Approximate boundary conditions. IEEE Trans. Antennas Propag. 1981, 29 (5): 826–829. Bibcode:1981ITAP...29..826S. doi:10.1109/tap.1981.1142657. hdl:2027.42/20954 . 
  12. ^ Pu, M.; et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Optics Express. 17 January 2012, 20 (3): 2246–2254. Bibcode:2012OExpr..20.2246P. PMID 22330464. doi:10.1364/oe.20.002246 . 
  13. ^ Li, S.; et al. Broadband Perfect Absorption of Ultrathin Conductive Films with Coherent Illumination: Super Performance of Electromagnetic Absorption. Physical Review B. 2015, 91 (22): 220301. Bibcode:2015PhRvB..91v0301L. S2CID 118609773. arXiv:1406.1847 . doi:10.1103/PhysRevB.91.220301. 
  14. ^ Taghvaee, H.R.; et al. Circuit modeling of graphene absorber in terahertz band. Optics Communications. 2017, 383: 11–16. Bibcode:2017OptCo.383...11T. doi:10.1016/j.optcom.2016.08.059. 
  15. ^ Ni, X.; Emani, N. K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband light bending with plasmonic nanoantennas. Science. 2012, 335 (6067): 427. Bibcode:2012Sci...335..427N. PMID 22194414. S2CID 18790738. doi:10.1126/science.1214686 . 
  16. ^ Verslegers, Lieven; Fan, Shanhui. Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film. Nano Lett. 2009, 9 (1): 235–238. Bibcode:2009NanoL...9..235V. PMID 19053795. S2CID 28741710. doi:10.1021/nl802830y. 
  17. ^ Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Planar photonics with metasurfaces. Science. 2013, 339 (6125): 1232009 [2024-04-29]. PMID 23493714. S2CID 33896271. doi:10.1126/science.1232009. (原始内容存档于2024-02-24). 
  18. ^ 18.0 18.1 Yu, Nanfang; Genevet, Patrice; Mikhail Kats; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science. 2011, 334 (6054): 333–337. Bibcode:2011Sci...334..333Y. PMID 21885733. S2CID 10156200. doi:10.1126/science.1210713 . 
  19. ^ 19.0 19.1 Lin, Dianmin; Fan, Pengyu; Hasman, Erez; Brongersma, Mark L. Dielectric gradient metasurface optical elements. Science. 2014, 345 (6194): 298–302. Bibcode:2014Sci...345..298L. PMID 25035488. S2CID 29708554. doi:10.1126/science.1253213. 
  20. ^ Pfeiffer, Carl; Grbic, Anthony. Metamaterial Huygens' Surfaces: Tailoring Wave Fronts with Reflectionless Sheets. Phys. Rev. Lett. 2013, 110 (2): 197401. Bibcode:2013PhRvL.110b7401W. PMID 23383937. S2CID 118458038. arXiv:1206.0852 . doi:10.1103/PhysRevLett.110.027401. 
  21. ^ Felbacq, Didier. Impedance operator description of a metasurface. Mathematical Problems in Engineering. 2015, 2015: 473079. arXiv:1507.07736 . doi:10.1155/2015/473079 . 
  22. ^ Quevedo-Teruel, Oscar; et al. On the benefits of glide symmetries for microwave devices. IEEE Journal of Microwaves. 2021, 1: 457–469. S2CID 231619012. doi:10.1109/JMW.2020.3033847 . 
  23. ^ Aieta, Francesco; Genevet, Patrice; Kats, Mikhail; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico. Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters. 2012, 12 (9): 4932–6. Bibcode:2012NanoL..12.4932A. PMID 22894542. S2CID 5412108. arXiv:1207.2194 . doi:10.1021/nl302516v. 
  24. ^ Ni, X.; Ishii, S.; Kildishev, A.V.; Shalaev, V.M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses (PDF). Light: Science & Applications. 2013, 2 (4): e72 [2024-04-29]. Bibcode:2013LSA.....2E..72N. S2CID 8927737. doi:10.1038/lsa.2013.28. (原始内容存档 (PDF)于2023-12-02). 
  25. ^ I. Moreno, M. Avendaño-Alejo, and C. P. Castañeda-Almanza, "Nonimaging metaoptics," Opt. Lett. 45, 2744-2747 (2020). https://doi.org/10.1364/OL.391357
  26. ^ Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface holograms for visible light (PDF). Nature Communications. 2013, 4: 1–6 [2024-04-29]. Bibcode:2013NatCo...4.2807N. S2CID 5550551. doi:10.1038/ncomms3807. (原始内容存档 (PDF)于2023-11-23). 
  27. ^ Genevet, Patrice; Yu, Nanfang; Aieta, Francesco; Lin, Jiao; Kats, Mikhail; Blanchard, Romain; Scully, Marlan; Gaburro, Zeno; Capasso, Federico. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Applied Physics Letters. 2012, 100 (1): 013101. Bibcode:2012ApPhL.100a3101G. doi:10.1063/1.3673334. 
  28. ^ Xu, T.; et al. Plasmonic deflector. Opt. Express. 2008, 16 (7): 4753–4759. Bibcode:2008OExpr..16.4753X. PMID 18542573. doi:10.1364/oe.16.004753 . 
  29. ^ Luo, Xiangang; Ishihara, Teruya. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 2004, 84 (23): 4780. Bibcode:2004ApPhL..84.4780L. doi:10.1063/1.1760221. 
  30. ^ Fang, Nicholas; Lee, Hyesog; Sun, Cheng; Zhang, Xiang. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science. 2005, 308 (5721): 534–7. Bibcode:2005Sci...308..534F. PMID 15845849. S2CID 1085807. doi:10.1126/science.1108759. 
  31. ^ Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Xu, Zhuo; Zhang, Anxue. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Applied Physics Letters. 2014, 104 (22): 221110. Bibcode:2014ApPhL.104v1110L. doi:10.1063/1.4881935. 
  32. ^ Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A.; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science. October 2011, 334 (6054): 333–337. Bibcode:2011Sci...334..333Y. PMID 21885733. S2CID 10156200. doi:10.1126/science.1210713 . 
  33. ^ Modi, A. Y.; Alyahya, M. A.; Balanis, C. A.; Birtcher, C. R. Metasurface-Based Method for Broadband RCS Reduction of Dihedral Corner Reflectors with Multiple Bounces. IEEE Transactions on Antennas and Propagation. 2019, 68 (3): 1. S2CID 212649480. doi:10.1109/TAP.2019.2940494. 
  34. ^ Modi, A. Y.; Balanis, C. A.; Birtcher, C. R.; Shaman, H. New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory. IEEE Transactions on Antennas and Propagation. 2019, 67 (1): 298–308. Bibcode:2019ITAP...67..298M. S2CID 58670543. doi:10.1109/TAP.2018.2878641. 
  35. ^ Modi, A. Y.; Balanis, C. A.; Birtcher, C. R.; Shaman, H. Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces using Artificial Magnetic Conductors. IEEE Transactions on Antennas and Propagation. 2017, 65 (10): 5406–5417. Bibcode:2017ITAP...65.5406M. S2CID 20724998. doi:10.1109/TAP.2017.2734069. 
  36. ^ Meng, Yuan; Chen, Yizhen; Lu, Longhui; Ding, Yimin; Cusano, Andrea; Fan, Jonathan A.; Hu, Qiaomu; Wang, Kaiyuan; Xie, Zhenwei; Liu, Zhoutian; Yang, Yuanmu. Optical meta-waveguides for integrated photonics and beyond. Light: Science & Applications. 2021-11-22, 10 (1): 235. Bibcode:2021LSA....10..235M. ISSN 2047-7538. PMC 8608813 . PMID 34811345. doi:10.1038/s41377-021-00655-x (英语). 
  37. ^ 37.0 37.1 Li, Zhaoyi; Kim, Myoung-Hwan; Wang, Cheng; Han, Zhaohong; Shrestha, Sajan; Overvig, Adam Christopher; Lu, Ming; Stein, Aaron; Agarwal, Anuradha Murthy; Lončar, Marko; Yu, Nanfang. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nature Nanotechnology. July 2017, 12 (7): 675–683 [2024-04-29]. Bibcode:2017NatNa..12..675L. ISSN 1748-3395. OSTI 1412777. PMID 28416817. doi:10.1038/nnano.2017.50. (原始内容存档于2023-09-23) (英语). 
  38. ^ Guo, Xuexue; Ding, Yimin; Chen, Xi; Duan, Yao; Ni, Xingjie. Molding free-space light with guided wave–driven metasurfaces. Science Advances. 2020-07-17, 6 (29): eabb4142. Bibcode:2020SciA....6.4142G. ISSN 2375-2548. PMC 7439608 . PMID 32832643. arXiv:2001.03001 . doi:10.1126/sciadv.abb4142 (英语). 
  39. ^ He, Tiantian; Meng, Yuan; Liu, Zhoutian; Hu, Futai; Wang, Rui; Li, Dan; Yan, Ping; Liu, Qiang; Gong, Mali; Xiao, Qirong. Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge. Optics Express. 2021-11-22, 29 (24): 39406–39418. Bibcode:2021OExpr..2939406H. ISSN 1094-4087. PMID 34809306. S2CID 243813207. doi:10.1364/OE.443186  (英语). 
  40. ^ Cheben, Pavel; Halir, Robert; Schmid, Jens H.; Atwater, Harry A.; Smith, David R. Subwavelength integrated photonics. Nature. August 2018, 560 (7720): 565–572 [2024-04-29]. Bibcode:2018Natur.560..565C. ISSN 1476-4687. PMID 30158604. S2CID 52117964. doi:10.1038/s41586-018-0421-7. (原始内容存档于2024-01-17) (英语). 
  41. ^ Meng, Yuan; Liu, Zhoutian; Xie, Zhenwei; Wang, Ride; Qi, Tiancheng; Hu, Futai; Kim, Hyunseok; Xiao, Qirong; Fu, Xing; Wu, Qiang; Bae, Sang-Hoon; Gong, Mali; Yuan, Xiaocong. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Research. 2020-04-01, 8 (4): 564. ISSN 2327-9125. S2CID 213576669. doi:10.1364/PRJ.384449 (英语). 
  42. ^ Wu, Changming; Yu, Heshan; Lee, Seokhyeong; Peng, Ruoming; Takeuchi, Ichiro; Li, Mo. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nature Communications. 2021-01-04, 12 (1): 96. Bibcode:2021NatCo..12...96W. ISSN 2041-1723. PMC 7782756 . PMID 33398011. arXiv:2004.10651 . doi:10.1038/s41467-020-20365-z (英语). 
  43. ^ A. Arbabi. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nature Communications. 2016, 7: 13682–89. Bibcode:2016NatCo...713682A. PMC 5133709 . PMID 27892454. arXiv:1604.06160 . doi:10.1038/ncomms13682. 
  44. ^ W. Chen. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology. 2018, 13 (3): 220–226 [2024-04-29]. Bibcode:2018NatNa..13..220C. PMID 29292382. S2CID 205567341. doi:10.1038/s41565-017-0034-6. (原始内容存档于2024-02-26). 
  45. ^ S. Zhang. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics. 2020, 10 (1): 259–293. Bibcode:2020Nanop..10..373Z. S2CID 225279574. doi:10.1515/nanoph-2020-0373 . hdl:10023/20902 . 
  46. ^ L. Jiang. Multifunctional hyperbolic nanogroove metasurface for submolecular detection. Small. 2017, 13 (30): 1700600–10. PMID 28597602. doi:10.1002/smll.201700600. 
  47. ^ M. Beruete. Terahertz sensing based on metasurfaces. Advanced Optical Materials. 2019, 8 (3): 1900721–28 [2024-04-29]. S2CID 199649103. doi:10.1002/adom.201900721. (原始内容存档于2024-04-29). 
  48. ^ R. Ahmed. Tunable Fano-resonant metasurfaces on a disposable plastic-template for multimodal and multiplex biosensing. Advanced Materials. 2020, 32 (19): 1907160–78. Bibcode:2020AdM....3207160A. PMC 8713081 . PMID 32201997. doi:10.1002/adma.201907160. hdl:11693/75646. 
  49. ^ Mai, Wending; Campbell, Sawyer D.; Whiting, Eric B.; Kang, Lei; Werner, Pingjuan L.; Chen, Yifan; Werner, Douglas H. Prismatic discontinuous Galerkin time domain method with an integrated generalized dispersion model for efficient optical metasurface analysis. Optical Materials Express. 2020-10-01, 10 (10): 2542–2559. Bibcode:2020OMExp..10.2542M. ISSN 2159-3930. doi:10.1364/OME.399414  (英语). 
  50. ^ Mai, Wending; Werner, Douglas. prism-DGTD with GDM to analyze pixelized metasurfaces. 2020 [2024-04-29]. doi:10.17605/OSF.IO/2NA4F. (原始内容存档于2024-04-29). 
  51. ^ Song, Qinghua; Baroni, Arthur; Sawant, Rajath; Ni, Peinan; Brandli, Virginie; Chenot, Sébastien; Vézian, Stéphane; Damilano, Benjamin; de Mierry, Philippe; Khadir, Samira; Ferrand, Patrick. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nature Communications. December 2020, 11 (1): 2651. Bibcode:2020NatCo..11.2651S. ISSN 2041-1723. PMC 7253437 . PMID 32461637. doi:10.1038/s41467-020-16437-9 (英语). 

Template:新兴技术