多解析度分析

多解析度分析(multiresolution analysis, MRA)或是多尺度近似(multiscale approximation, MSA)是最常用来分析离散小波变换〈DWT〉或是验证快速小波转换〈FWT〉理论的方法。本分析方法在1989年[1]及1998年[2]由Stephane Mallat 著作的论文提到。

定义

Lp空间 的多解析度分析由一系列嵌套子空间组成

 
  • 取样定理
    取样定理主要是在重建一个时间长度 中被取样过的信号:若信号是有限频宽,只要奈奎斯特频率(Nyquist frequency)比 小及可完整重建信号;否则得到的重建信号为近似的信号。因此可以说,愈小的 使得信号的重建愈容易, 的大小将决定信号解析度,同时,取样频率也受到 的限制。
  • 概念
    倘若一个信号具有变化速度差异大的区段,像是信号快速变化的区段穿插著变化平缓的区段,则上述单一解析度将不适用于分析信号。因此,多重解析度分析的概念因此而生。将信号在不同解析度上分析。
  • 定义
     为在函数空间 里的子空间的数列,假如
    1. 分簇性(nested): 
    2. 稠密性(density): 
    3. 分离性(seperation): 
    4. 调节性(scaling): 
    5. 正规正交基底(orthonormal basis): 且集合  的一正规正交基底。
     为带有调整函数 的多解析度分析。
  • 应用
    在高频的时候,使用较细致的时间解析度及较粗糙的频率解析度。
    在低频的时候,使用较细致的频率解析度及较粗糙得时间解析度。
    相当适合使用在长时间都是低频成份,只有在短时间内会有高频成份的信号

参考文献

  1. ^ Mallat, S., "A Theory for Multi-resolution Approximation: the Wavelet Approximation," IEEE Trans. PAMI 11 (1989), 674-693.
  2. ^ Mallat, S., "A Wavelet Tour of Signal Processing," Academic Press, San Diego, 1998.
  • Albert Boggess, Francis J. Narcowich, "A First Course in Wavelets with Fourier Analysis"