富气陨石

富气陨石是指含有大量惰性气体,例如,有时还有其它元素的陨石[1]。尽管这些气体实际上几乎存在所有的陨石中[2],费耶特维尔陨石有〜2,000,000 x10−8 ccSTP/公克[3],或〜2%体积当量的氦。相较背景水准是只有几个PPM

富气陨石的鉴定是依据所存在轻稀有气体的量,如果不在所有陨石中存在的已知稀有气体组成分组的基础上再增加一个分组,就无法解释其含量[3]

历史

威廉·拉姆齐在1895年在地质样本采样后不久,在钇铀矿中第一次发现地球上的氦,而不是通过观测太阳[4]

鲍尔在1947年提出测定陨石年代的方法[5],并由格林(Gerling)和帕夫洛娃(Pavlova)于1951年在出版品上明确的陈述[6]。然而,这很快导致陨石年龄的巨大变化:人们意识到过量的氦(包括氦-3、稀土)也是由辐射产生的[7]

第一个确认的富气陨石是由格林和列夫斯基(Levskii)于1956年发表在出版品上的斯塔罗佩西亚诺(Staroe Pesyanoe,通常简称为Pesyanoe)。与后来的费耶特维尔家族一样,佩西亚诺的氦含量约为100万x10−8 ccSTP/g[8]

雷诺兹(Reynolds)发表的"一般氙(Xe)的异常"[9],包括Xe129等衰变的产物,开创了异种学英语xenology的子领域[10][11][12][13],一直到今天[14][15]

在1980年代首次发表了太阳前颗粒(Presolar grains,PSGs)[16],这是寻找惰性气体导出的[17];但PSGs并不是单纯地通过气体含量来检测[18][19]

调查范围

相关条目

参考资料

  1. ^ Suess, H. E.; Wänke, H.; Wlotzka, F. On the origin of gas-rich meteorites. Geochimica et Cosmochimica Acta (ScienceDirect). 1964-05-01, 28 (5): 595–607. Bibcode:1964GeCoA..28..595S. doi:10.1016/0016-7037(64)90080-8. 
  2. ^ Swindle, T. Trapped noble gases in meteorites. Tucson: University of Arizona Press. 1988: 535.  in Meteorites and the early solar system, J. F. Kerridge & M. S. Matthews Eds.
  3. ^ 3.0 3.1 Goswami, J.; Lal, D.; Wilkening, L. Gas-Rich meteorites: Probes for particle environment and dynamical processes in the inner solar system. Space Science Reviews. 1983, 37 (1–2): 111–59. Bibcode:1984SSRv...37..111G. S2CID 121335431. doi:10.1007/BF00213959. 
  4. ^ Ramsay, W. Argon and Helium in Meteoritic Iron. Nature. 4 Jul 1895, 52 (1340): 224–25. Bibcode:1895Natur..52..224R. doi:10.1038/052224a0 . 
  5. ^ Bauer, C. Production of Helium in Meteorites by Cosmic Radiation. Physical Review. 15 August 1947, 72 (4): 354. Bibcode:1947PhRv...72..354B. doi:10.1103/PhysRev.72.354. 
  6. ^ Gerling, E.; Pavlova, T. Determination of the geological age of two stony meteorites by the argon method. Doklady Akademii Nauk SSSR. 1951, 77: 85–97. 
  7. ^ Paneth, F.; Reasbeck, P.; Mayne, K. Production by cosmic rays of helium-3 in meteorites. Nature. Aug 1953, 172 (4370): 200–01. Bibcode:1953Natur.172..200P. PMID 13087152. S2CID 4149773. doi:10.1038/172200a0. 
  8. ^ Gerling, E.; Levskii, L. On the origin of the rare gases in stony meteorites. Doklady Akademii Nauk SSR. 1956, 110: 750. 
  9. ^ Reynolds, J. Xenology. Journal of Geophysical Research. 15 May 1963, 68 (10): 2939–56. Bibcode:1963JGR....68.2939R. doi:10.1029/JZ068i010p02939. 
  10. ^ Fleischer, R.; Price, P.; Walker, R. 6.5 Study of Nucleosynthesis and the Early History of the Solar System by Extinct Isotopes. Nuclear Tracks in Solids: Principles and Applications . University of California Press. 1975. ISBN 9780520026650. 
  11. ^ Hintenberger, H. Xenon in irdischer und in extraterrestrischer Materie (Xenologie). Naturwissenschaften. Jul 1972, 59 (7): 285–91. Bibcode:1972NW.....59..285H. S2CID 33097923. doi:10.1007/BF00593352. 
  12. ^ Kuroda, P. Xenology: The enigma of xenon in carbonaceous chondrite. Geochemical Journal. Jan 1976, 10 (3): 121–36. Bibcode:1976GeocJ..10..121K. doi:10.2343/geochemj.10.121 . 
  13. ^ Staudacher, T. Allègre C. Terrestrial xenology. Earth and Planetary Science Letters. Oct 1982, 60 (3): 389–406. Bibcode:1982E&PSL..60..389S. doi:10.1016/0012-821X(82)90075-9. 
  14. ^ Tolstikhin, I.; Marty, B.; Porcelli, D.; Hofmann, A. Evolution of volatile species in the earth's mantle: A view from xenology. Geochimica et Cosmochimica Acta. Jul 2014, 136: 229–46. Bibcode:2014GeCoA.136..229T. doi:10.1016/j.gca.2013.08.034. 
  15. ^ Diehl, R.; Hartmann, D.; Prantzos, N. 2.2.4 Extinct Radioactivity and Immediate Pre-Solar Nucleosynthesis. Astrophysics with Radioactive Isotopes 2nd. Springer. 2018. ISBN 978-3319919294. 
  16. ^ Lewis, R.; Ming, T.; Wacker, J.; Anders, E.; Steel, E. Interstellar diamonds in meteorites. Nature. Mar 1987, 326 (6109): 160–62. Bibcode:1987Natur.326..160L. S2CID 4324489. doi:10.1038/326160a0. 
  17. ^ Zinner, E.; Ming, T.; Anders, E. Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite. Nature. 24 Dec 1987, 330 (6150): 730–32. Bibcode:1987Natur.330..730Z. S2CID 4306270. doi:10.1038/330730a0. 
  18. ^ Ott, U. Interstellar grains in meteorites. Nature. Jul 1993, 364 (6432): 25–33. Bibcode:1993Natur.364...25O. S2CID 4271084. doi:10.1038/364025a0. 
  19. ^ 引用错误:没有为名为andersMESS的参考文献提供内容
  • Handbook of Elemental Abundances in Meteorites, Mason, B. ed. 1970 Gordon and Breach New York ISBN 9780677149509 Chapter 2: The Noble Gases, Heymann, D., p. 29
  • Mazor, E. Heymann, D. Anders, E. Noble gases in carbonaceous chondrites. 1970 Geochimica et Cosmochimica Acta vol. 34 p. 781-824
  • Goswami, J. Lal, D. Wilkening, L. Gas-Rich meteorites: Probes for particle environment and dynamical processes in the inner solar system 1983 Space Science Reviews vol. 37 p. 111-59
  • The Sun in Time, Sonett, C. Giampapa, M. Mathews, M. eds. 1991 University of Arizona Press Tucson ISBN 978-0-8165-1297-3
  • Ozima, M. Podosek, F. Noble Gases in Geochemistry, 2nd ed. 2002 Cambridge University Press Cambridge ISBN 9780521803663
  • Noble Gases in Geochemistry and Cosmochemistry, Porcelli, D. Ballentine, C. Wieler, R. eds. 2002 Mineralogical Society of America Washington, DC
  • Treatise on Geochemistry vol.1 2003 1.14 Noble Gases, Podosek, F. p. 381-403
  • Meteorites and the Early Solar System II, Lauretta, D. McSween, H. eds. 2006 University of Arizona Press Tucson ISBN 9780816525621
  • Geochemical Perspectives Jul 2013 vol. 2 issue 2 Special issue, Noble Gas Constraints on the Origin and Evolution of Earth’s Volatiles ISSN 2223-7755