经颅磁振导航聚焦超音波

经颅磁振导航聚焦超音波(英语:transcranial Magnetic Resonance guided Focused UltrasoundtcMRgFUS or MRgFUS),中文又简称医萨刀[1]神波刀[2],及磁波刀[3],为专用于脑部的高强度聚焦超声系统(High Intensity Focused Ultrasound,HIFU)作用于脑组织达到特定的应用,并借由磁共振成像进行即时解剖导航及温度监控,应用根据给予组织的温度高低而分为热疗、热破坏及热消融,在无特别声明的状况下,一般指的是热消融的功用;根据聚焦超音波基金会(Focused Ultrasound Foundation) 2020年的领域发展报告[4],目前此技术已通过10个国家以上之卫生机关或区域组织的相关认证法规可使用于特定适应症,包含澳洲[5]加拿大[6]欧盟[7]日本[8]台湾[9]美国[10]中国[11]......等。经颅磁振导航聚焦超音波是一种神经外科领域新兴的微创手术的方式[12],机器本体结合磁共振成像机[13]聚焦超音波,借由磁共振成像监控颅内温度[14]使得操作者能安心地使用高强度聚焦超声探头在颅内聚焦音波消融目标组织[15],病患全程清醒且无实体手术切口,仅需在术前在头皮四个点施打局部麻醉药来固定稳定头部的支架,此特性使得神经内科医师可以在手术过程中对病患即时进行相关的理学检查,病患本身也能在手术时马上感受到身体的改变[16]

原理概述

  1. 磁共振成像在经颅磁振导航聚焦超音波手术中带来脑部结构与组织的辅助导引,并在音波给予期间应用磁共振成像温度成像技术[17]即时监控手术区域的温度提升。
  2. 超音波在经颅磁振导航聚焦超音波手术中带来能量,达到类似手术刀的功能来进行手术;透过一千个以上的超音波振元应用相位校正技术[18]让超音波束能在穿透头骨后的巨大衰减中保持有效聚焦,更重要的是焦点保持一定的能量,以进行长累积时间的低温度治疗,摄氏50~54[19],或是短累积时间的高温治疗,摄氏55以上[20],来达到长期维持的疗效。
  3. 音波在遭遇密度变化会产生折射反射,甚至全反射,因此在一般的超音波影像检查,技术人员会在皮肤表面涂上冰凉的凝胶,缓冲超音波探头至表皮的密度变化,在经颅磁振导航聚焦超音波手术中则利用作为头部与超音波震源间的密度缓冲物质,并利用电子控制系统的演算法进行超音波相位的调控,避免反相位的振幅抵销,也可以小幅度移动焦点,同时系统会监控空蚀现象(Cavitation)[21]的产生,即时调控超音波强度避免此现象发生并在颅内发出非预期的冲击波;但在另一类应用中,会降低音波频率[22]加上注射超声造影剂来刻意造成空蚀现象的产生,超音波震荡会使微气泡体积随著超音波的疏密变化而改变,体积一旦超过阈值会使微气泡爆破并发射冲击波,短暂的打开血脑屏障让药物得以投送进脑组织[23],此应用的范围为局部组织而非单一靶点,因此不需要精细的磁共振成像辅助导引以及稳定头部的支架,但其使用目的已全然不同,目标为辅助投送药物进入脑部而非烧融组织形成伤口,目前此技术应用于癫痫阿兹海默症胶质母细胞瘤的人体试验中[24]

临床适应症

  1. 脑神经手术中,有传统的手术刀,及利用通电探针的射频烧灼术(Radiofrequency Ablation)和使用伽玛射线的加马刀(Gamma Knife),以及应用超音波的经颅磁振导航聚焦超音波进行热消融等许多方式,但临床机转大同小异,不外乎利用细胞凋亡[25]细胞坏死[26]或是直接切除组织让有问题的细胞无法作用来达到病症的消除或减缓;因此治疗的颅内标的或靶点大多通用,例如控制颤抖的首选靶点为视丘腹内侧核(Vim)[27]
  2. 目前各国已通过医疗法规核可使用经颅磁振导航聚焦超音波治疗之适应症主要为动作障碍类的疾病,如原发性颤抖症[28]、颤抖型帕金森氏症[29],与帕金森氏症的动作障碍症状缓解[30],其它疾病如癫痫[31]、X染色体性联遗传肌张力不全帕金森氏症症候群[32]尚在临床试验阶段。
  3. 部分精神类疾病如强迫症[33]忧郁症[34]或是神经痛症状如三叉神经痛[35]甚至是脑部肿瘤仍在临床试验阶段[36]

医疗保险

  1. 美国目前有联邦医疗保险(Medicare)[37]及部分私立保险公司同意为使用经颅磁振导航聚焦超音波手术治疗原发性颤抖症的保户进行给付[38],如蓝十字蓝盾协会(Blue Cross and Blue Shield Association) [39]联合健康保险(Unitedhealthcare)[40]
  2. 日本于2019年6月将此治疗术式纳入日本国民健康保险[41]

与海扶刀的异同

经颅磁振导航聚焦超音波与海扶刀同属高强度聚焦超声[42] 技术应用中的热消融,需提升温度直至组织消融,但经颅磁振导航聚焦超音波有专用的中空半圆形超音波探头让头颅置入,音波为了穿透头骨必须进行相位校正并且增加振元数量以达到能在颅内进行热消融的能量并且使用磁共振成像进行解剖导航;而海扶刀一般应用于体部,常用于摄护腺癌[43]子宫肌瘤 [44]乳癌 [45],或骨肉瘤 [46],因为病灶皆不被骨组织覆盖,音波传递过程的衰减在可接受的范围,故普遍利用超音波影像作为导航。

参考资料

  1. ^ 不再怕手抖!彰濱秀傳醫院引進「醫薩刀」 (新闻稿). 民视新闻网. 2017-09-26 [2021-11-18]. (原始内容存档于2021-11-18). 
  2. ^ 原發性顫抖症纏身 「神波刀」一次搞定 (新闻稿). 自由时报. 2019-07-02 [2021-11-18]. (原始内容存档于2021-11-18). 
  3. ^ 新技术“磁波刀”进入中国临床 造福特发性震颤患者 (新闻稿). 中国新闻网. 2021-05-24 [2021-07-01]. (原始内容存档于2021-07-11). 
  4. ^ State of the Field of Focused Ultrasound (PDF). Focused Ultrasound Foundation. [2021-07-13]. (原始内容存档 (PDF)于2021-07-13). 
  5. ^ ARTG 128137. Therapeutic Goods Administration,Department of Health,Australia Gonernment. [失效链接]
  6. ^ Health Canada Approves Insightec's Exablate Neuro System For The Treatment Of Essential Tremor (新闻稿). PRNewswire.UK. 2016-05-24 [2021-07-12]. (原始内容存档于2021-07-12). 
  7. ^ CE MARKING OF CONFORMITY MEDICAL DEVICES 2110597CE01 (PDF). DEKRA. [2021-07-12]. (原始内容存档 (PDF)于2021-07-12). 
  8. ^ 新医療機器として承認された医療機器について@承認番号 22800BZI00040000. 日本厚生劳动省. 2016-12-15 [2021-07-02]. (原始内容存档于2021-07-09). 
  9. ^ 衛部醫器輸字第030304號醫視特-超音波腦神經治療儀. 台湾卫生福利部食品药物管理署. [2021-07-02]. (原始内容存档于2021-07-09). 
  10. ^ PMA P150038. U.S. Food and Drug Administration. 2016-07-11 [2021-07-02]. (原始内容存档于2022-01-25). 
  11. ^ 中國國家藥品監督管理局-醫療器材. [2021-07-07]. (原始内容存档于2021-12-24). 
  12. ^ Na Young Jung; Jin Woo Chang. Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future. Journal of korean medical science. 2018, 33(44): e279. doi:10.3346/jkms.2018.33.e279. 
  13. ^ 存档副本. [2022-07-11]. (原始内容存档于2022-03-24). 
  14. ^ Viola Rieke; Kim Butts Pauly. MR Thermometry. Journal of magnetic resonance imaging. 2008, 27 (2): 376–390. PMC 2780364 . PMID 18219673. doi:10.1002/jmri.21265. 
  15. ^ Pejman Ghanouni; Kim Butts Pauly; W. Jeff Elias; Jaimie Henderson; Jason Sheehan; Stephen Monteith; Max Wintermark. Transcranial MR-Guided Focused Ultrasound: A Review of the Technology and Neuro Applications. American Journal of Roentgenology. 2015, 205 (1): 150–159. PMC 4687492 . PMID 26102394. doi:10.2214/AJR.14.13632. 
  16. ^ Tony R. Wang; Aaron E. Bond; Robert F. Dallapiazza; Aaron Blanke; David Tilden; Thomas E. Huerta; Shayan Moosa; Francesco U. Prada; W. Jeffrey Elias. Transcranial magnetic resonance imaging-guided focused ultrasound thalamotomy for tremor: technical note. Neurosurgical Focus. 2018, 44 (2): E3. PMID 29385914. doi:10.3171/2017.10.FOCUS17609. 
  17. ^ Lukas Winter; Eva Oberacker; Katharina Paul; Yiyi Ji; Celal Oezerdem; Pirus Ghadjar; Alexander Thieme; Volker Budach; Peter Wust; Thoralf Niendorf. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. International Journal of Hyperthermia. 2016, 32 (1): 62–75. doi:10.3109/02656736.2015.1108462. 
  18. ^ Lukas Winter; Eva Oberacker; Katharina Paul; Yiyi Ji; Celal Oezerdem; Pirus Ghadjar; Alexander Thieme; Volker Budach; Peter Wust; Thoralf Niendorf. Acoustical properties of the human skull. The Journal of the Acoustical Society of America. 1998, 63 (5): 1576(1978). doi:10.1121/1.381852. 
  19. ^ Ryan M Jones; Eva Oberacker; Yuexi Huang; Nadia Scantlebury; Nir Lipsman; Michael L Schwartz; Kullervo Hynynen. Accumulated thermal dose in MRI-guided focused ultrasound for essential tremor: repeated sonications with low focal temperatures. Journal of Neurosurgery. 2019, 132 (6): 1802–1809. PMC 7139920 . PMID 31075781. doi:10.3171/2019.2.JNS182995. 
  20. ^ Cesare Gagliardo; Maurizio Marrale; Costanza D'Angelo; Roberto Cannella; Giorgio Collura; Gerardo Iacopino; Marco D'Amelio; Alessandro Napoli; Tommaso Vincenzo Bartolotta; Carlo Catalano; Roberto Lagalla; Massimo Midiri. Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound Treatment at 1.5 T: A Retrospective Study on Treatment- and Patient-Related Parameters Obtained From 52 Procedures. Frontiers in Physics. 2020, 7: 223. ISSN 2296-424X. doi:10.3389/fphy.2019.00223. 
  21. ^ Costas D. Arvanitis; Nathan McDannold. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. The International Journal of Medical Physics Research and Practice. 2013, 40 (11): 112901. doi:10.1118/1.4823793. 
  22. ^ Hongchae Baek; Ki Joo Pahk; Hyungmin Kim. A review of low-intensity focused ultrasound for neuromodulation. Biomedical engineering letters. 2017, 7 (2): 135–142. PMC 6208465 . PMID 30603160. doi:10.1007/s13534-016-0007-y. 
  23. ^ Todd Mainprize; Nir Lipsman; Yuexi Huang; Ying Meng; Allison Bethune; Sarah Ironside; Chinthaka Heyn; Ryan Alkins; Maureen Trudeau; Arjun Sahgal; James Perry; Kullervo Hynynen. Blood-Brain Barrier Opening in Primary Brain Tumors with Non-invasive MR-Guided Focused Ultrasound: A Clinical Safety and Feasibility Study. Scientific Reports. 2019, 9. PMC 6344541 . PMID 30674905. doi:10.1038/s41598-018-36340-0. 
  24. ^ Clinical Pipeline chart in NaviFUS system. NaviFUS. 202-04 [2021-11-18]. (原始内容存档于2021-11-18). 
  25. ^ Fukuoka S; Oka K; Seo Y; Tokanoshi M; Sumi Y; Nakamura H; Nakamura J; Ikawa F. Apoptosis following gamma knife radiosurgery in a case of acoustic schwannoma. Stereotactic and Functional Neurosurgery. 1998, 70 (Suppl 1): 88–94. PMID 9782240. doi:10.1159/000056411. 
  26. ^ Andrea Franzini; Shayan Moosa; Domenico Servello; Isabella Small; Francesco DiMeco; Zhiyuan Xu; William Jeffrey Elias; Angelo Franzini; Francesco Prada. Ablative brain surgery: an overview, International Journal of Hyperthermia 36 (2): 64–80. 2019. doi:10.1080/02656736.2019.1616833. 
  27. ^ Joshua K Wong; James H Cauraugh; Kwo Wei David Ho; Matthew Broderick; Adolfo Ramirez-Zamora; Leonardo Almeida; Aparna Wagle Shukla; Christina A Wilson; Rob Ma de Bie; Frances M Weaver; Nyeonju Kang; Michael S Okun. STN vs. GPi deep brain stimulation for tremor suppression in Parkinson disease: A systematic review and meta-analysis. Journal of Parkinsonism and Related Disorders. 2019, 58: 56–62. doi:10.1016/j.parkreldis.2018.08.017. 
  28. ^ MR-guided Focused Ultrasound Treatment for Essential Tremor. InSightec.Ltd. [2021-07-07]. (原始内容存档于2021-07-10). 
  29. ^ MR-guided Focused Ultrasound Treatment for Tremor-dominant Parkinson's Disease. InSightec.Ltd. [2021-07-07]. (原始内容存档于2021-07-11). 
  30. ^ FDA Approves Focused Ultrasound Treatment for Parkinson’s Disease (新闻稿). Focused Ultrasound Fundation. 2021-11-04 [2021-11-18]. (原始内容存档于2021-12-28). 
  31. ^ Whitney E Parker; Elizabeth K Weidman; J Levi Chazen; Sumit N Niogi; Rafael Uribe-Cardenas; Michael G Kaplitt; Caitlin E Hoffman. Magnetic resonance-guided focused ultrasound for ablation of mesial temporal epilepsy circuits: modeling and theoretical feasibility of a novel noninvasive approach. Journal of Neurosurgerry. 2019, 133 (1): 1–2. doi:10.3171/2019.4.JNS182694. 
  32. ^ Roland Dominic G. Jamora; Wei-Chieh Chang; Takaomi Taira. Transcranial Magnetic Resonance-Guided Focused Ultrasound in X-Linked Dystonia-Parkinsonism. Life. 2021, 11 (5): 392. doi:10.3390/life11050392. 
  33. ^ Se Joo Kim; Daeyoung Roh; Hyun Ho Jung; Won Seok Chang; Chan-Hyung Kim; Jin Woo Chang. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder: 2-year follow-up. Journal of psychiatry & neuroscience. 2018, 43 (4). PMID 29717977. doi:10.1503/jpn.170188. 
  34. ^ Minsoo Kim; Chan-Hyung Kim; Hyun Ho Jung; Se Joo Kim; Jin Woo Chang. Treatment of Major Depressive Disorder via Magnetic Resonance–Guided Focused Ultrasound Surgery. Biological Psychiatry. 2018, 83 (1): E17–E18. doi:10.1016/j.biopsych.2017.05.008. 
  35. ^ Marc N. Gallay; David Moser; Daniel Jeanmonod. MR-Guided Focused Ultrasound Central Lateral Thalamotomy for Trigeminal Neuralgia. Single Center Experience. Frontiers in Neurology. 2018, 11: 271. ISSN 1664-2295. doi:10.3389/fneur.2020.00271. 
  36. ^ focused ultrasound disease and conditions. Fusfoundation.org. [2021-07-07]. (原始内容存档于2022-02-28). 
  37. ^ Local Coverage Determination(LCD):Magnetic-Resonance-Guided Focused Ultrasound Surgery (MRgFUS) for Essential Tremor (L37729). U.S. Centers for Medicare & Medicaid Services. [2021-07-14]. (原始内容存档于2021-07-14). 
  38. ^ search result "MRgFUS" in cms.gov. Centers for Medicare & Medicaid Services, US. [2021-11-18]. (原始内容存档于2021-11-18). 
  39. ^ Corporate Medical Policy about MRI-Guided Focused Ultrasound(MRgFUS) (PDF). Blue Cross and Blue Shield Association. [2021-07-14]. (原始内容存档 (PDF)于2022-01-22). 
  40. ^ Policy Guideline about Magnetic Resonance Image Guided High Intensity Focused Ultrasound (MRgFUS) for Essential Tremor (PDF). Unitedhealthcare. [2021-07-14]. (原始内容存档 (PDF)于2022-01-21). 
  41. ^ 医療機器の保険適用について@承認番号22800BZI00040000 (PDF). 日本厚生劳动省. 2019-05-31 [2021-07-02]. (原始内容存档 (PDF)于2022-01-20). 
  42. ^ HIFU in English Wiki. [2021-07-01]. (原始内容存档于2021-12-23). 
  43. ^ Christian G Chaussy; Stefan Thüroff. High-Intensity Focused Ultrasound for the Treatment of Prostate Cancer: A Review. Journal of Endourology. 2017, 31 (S1): 31-31. PMID 28355119. doi:10.1089/end.2016.0548. 
  44. ^ Yongshuo Ji; Kaimeng Hu; Yu Zhang; Lijun Gu; Junqiu Zhu; Linglin Zhu; Yanfei Zhu; Hong Zhao. High-intensity focused ultrasound: noninvasive treatment for local unresectable recurrence of osteosarcoma. Archives of Gynecology and Obstetrics. 2017, 296 (6). PMID 28975434. doi:10.1007/s00404-017-4548-9. 
  45. ^ Mirjam C L Peek; Feng Wu. High-intensity focused ultrasound in the treatment of breast tumours. Ecancermedicalscience. 2018, 12: 794. PMC 5804717 . PMID 29434660. doi:10.3332/ecancer.2018.794. 
  46. ^ Wenxi Yu; Lina Tang; Feng Lin; Yang Yao; Zan Shen; Xiaohui Zhou. High-intensity focused ultrasound: noninvasive treatment for local unresectable recurrence of osteosarcoma. Surgical Oncology. 2015, 24 (1). PMID 25453577. doi:10.1016/j.suronc.2014.10.001. 

外部链接