幾丁質酶

幾丁質酶(英語:ChitinaseEC編號:3.2.1.14)是一種催化幾丁質水解的酶,它能夠斷開幾丁質中的糖苷鍵[1]

大麥種子中的幾丁質酶

自然界分布

幾丁質生物包括許多細菌[2](例如氣單胞菌目芽孢桿菌屬弧菌屬[3]等)。這些細菌具有致病性或者腐食性。它們入侵活的節肢動物浮游動物真菌,也可能會降解這些生物的殘留物。

真菌,例如球蟲科球菌,也具有降解性的幾丁質酶,這與它們作為節肢動物病原體以及自身的潛力有關。

幾丁質酶也存在於植物中(例如大麥種子中的幾丁質酶:PDB:1CNS),其中一些是致病性(PR)蛋白被誘導系統性獲得抗性的一部分,表達則是由NPR1基因和水楊酸途徑介導的,兩者均涉及對真菌和昆蟲的抵抗力。其他植物幾丁質酶可能需要產生真菌共生酶。[4]

儘管哺乳動物不產生幾丁質,但它們具有兩種功能性幾丁質酶:殼三糖苷酶(CHIT1)和酸性哺乳動物幾丁質酶(AMCase),以及具有高度序列相似性但缺乏幾丁質酶活性的類似幾丁質酶的蛋白質(例如YKL-40)。[5]

功能

像纖維素一樣,幾丁質是一種相對耐降解的生物聚合物,[6] 儘管某些魚類能夠消化幾丁質,但通常不會被動物消化。[7] 目前認為,動物的幾丁質消化需要細菌共生體和長時間的發酵,類似於反芻動物的纖維素消化。然而,幾丁質酶已經從包括人類在內的某些哺乳動物的胃中分離出來。[8]

幾丁質酶活性還可以在人血[9][10][10]軟骨[11]中檢測到。與植物幾丁質酶一樣,這可能與病原體抗性有關。[12][13]

臨床意義

人體產生的幾丁質酶(稱為「人幾丁質酶」)可能與過敏有關,哮喘與幾丁質酶表達水平提高有關。[14][15][16][17][18]

人類幾丁質酶可以解釋某些最常見的過敏(塵蟎黴菌孢子等都含有幾丁質)和蠕蟲寄生蟲)感染之間的聯繫,這是衛生學假說的一種形式[19][20][21](蠕蟲具有幾丁質的口器以固定腸壁)。最後,植物中的幾丁質酶和水楊酸之間的聯繫已經建立,但是水楊酸與人類過敏之間存在假想的聯繫。[22]

真菌調節

調節因物種而異,並且在生物體內,具有不同生理功能的幾丁質酶將處於不同的調節機制下。例如,參與維護(比如重塑細胞壁)的幾丁質是構成表達的。但具有專門功用的酶,如降解外源性幾丁質或參與細胞分裂的,需要精確的基因時空調控。[23]

木霉的內切幾丁質酶的調控依賴於N-乙酰葡萄糖酶,數據表明,在反饋循環中,幾丁質的分解會產生N-乙酰葡萄糖胺,這有可能被採取並觸發對chitinbiosidases的上調節。[24]

釀酒酵母和ScCts1p(釀酒酵母幾丁質酶1)的調節中,幾丁質酶其中之一是通過降解隔膜中的幾丁質參與細胞分裂後的細胞分離。[25] 由於這些幾丁質酶在細胞分裂中很重要,因此必須進行嚴格的調節和激活。具體而言,在有絲分裂後期必須在子細胞中激活Cts1的表達,並且該蛋白必須位於隔膜的子位置。[26] 為此,必須與其他控制細胞不同階段的調節網絡進行協調,如Cdc14早期相位釋放(FEAR)、有絲分裂退出(MEN)和Ace2p(轉錄因子)和細胞形態生成(RAM)的調節。[27] 總的來說,不同調節網絡的整合使幾丁質酶降解細胞壁的功能取決於細胞周期的階段以及子細胞之間的特定位置。[23]

食物中的分布

幾丁質酶天然存在於許多常見食品中。例如,香蕉栗子奇異果鱷梨木瓜西紅柿都含有大量的幾丁質酶,可以抵抗真菌和一些無脊椎動物的入侵。壓力或環境信號(例如乙烯氣體)可能會刺激幾丁質酶產量的增加。

幾丁質酶分子的某些部分,在植物防禦中的功能相似,在結構上與橡膠乳膠中的促肝素或其他蛋白質幾乎相同,可能會引發一種稱為乳膠-水果綜合徵(latex-fruit syndrome)的過敏交叉反應。[28]

應用

幾丁質酶具有廣泛的應用,其中一些已經被工業實現。這包括將幾丁質生物轉化為有用的產品(例如肥料),生產不過敏,無毒,可生物相容和可生物降解的材料(已經生產出具有這些質量的隱形眼鏡人造皮膚和縫合線)以及增強的殺蟲劑殺菌劑[29]

幾丁質酶未來可能應用包括作為食品添加劑以延長保質期,哮喘和慢性鼻竇炎的治療劑,抗真菌藥物,抗腫瘤藥物以及蛋白質工程中所使用的一般成分。[29]

另見

參考資料

  1. ^ Jollès P, Muzzarelli RA. Chitin and Chitinases. Basel: Birkhäuser. 1999. ISBN 978-3-7643-5815-0. 
  2. ^ Xiao X, Yin X, Lin J, Sun L, You Z, Wang P, Wang F. Chitinase genes in lake sediments of Ardley Island, Antarctica. Applied and Environmental Microbiology. December 2005, 71 (12): 7904–9. PMC 1317360 . PMID 16332766. doi:10.1128/AEM.71.12.7904-7909.2005. 
  3. ^ Hunt DE, Gevers D, Vahora NM, Polz MF. Conservation of the chitin utilization pathway in the Vibrionaceae. Applied and Environmental Microbiology. January 2008, 74 (1): 44–51. PMC 2223224 . PMID 17933912. doi:10.1128/AEM.01412-07. 
  4. ^ Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Molecular Plant-Microbe Interactions. July 2000, 13 (7): 763–77. PMID 10875337. doi:10.1094/MPMI.2000.13.7.763 . 
  5. ^ Eurich K, Segawa M, Toei-Shimizu S, Mizoguchi E. Potential role of chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells. World Journal of Gastroenterology. November 2009, 15 (42): 5249–59. PMC 2776850 . PMID 19908331. doi:10.3748/wjg.15.5249. 
  6. ^ Akaki C, Duke GE. Apparent chitin digestibilities in the Eastern screech owl (Otus asio) and the American kestrel (Falco sparverius). Journal of Experimental Zoology. 2005, 283 (4–5): 387–393. doi:10.1002/(SICI)1097-010X(19990301/01)283:4/5<387::AID-JEZ8>3.0.CO;2-W. 
  7. ^ Gutowska MA, Drazen JC, Robison BH. Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. November 2004, 139 (3): 351–8. CiteSeerX 10.1.1.318.6544 . PMID 15556391. doi:10.1016/j.cbpb.2004.09.020. 
  8. ^ Paoletti MG, Norberto L, Damini R, Musumeci S. Human gastric juice contains chitinase that can degrade chitin. Annals of Nutrition & Metabolism. 2007, 51 (3): 244–51. PMID 17587796. doi:10.1159/000104144. 
  9. ^ Renkema GH, Boot RG, Muijsers AO, Donker-Koopman WE, Aerts JM. Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins. The Journal of Biological Chemistry. February 1995, 270 (5): 2198–202. PMID 7836450. doi:10.1074/jbc.270.5.2198 . 
  10. ^ 10.0 10.1 Escott GM, Adams DJ. Chitinase activity in human serum and leukocytes. Infection and Immunity. December 1995, 63 (12): 4770–3 [2020-10-05]. PMC 173683 . PMID 7591134. (原始內容存檔於2019-12-13). 
  11. ^ Hakala BE, White C, Recklies AD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. The Journal of Biological Chemistry. December 1993, 268 (34): 25803–10. PMID 8245017. 
  12. ^ Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. The Biochemical Journal. July 2002, 365 (Pt 1): 119–26. PMC 1222662 . PMID 12071845. doi:10.1042/BJ20020075. 
  13. ^ van Eijk M, van Roomen CP, Renkema GH, Bussink AP, Andrews L, Blommaart EF, Sugar A, Verhoeven AJ, Boot RG, Aerts JM. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. International Immunology. November 2005, 17 (11): 1505–12. PMID 16214810. doi:10.1093/intimm/dxh328 . 
  14. ^ Bierbaum S, Nickel R, Koch A, Lau S, Deichmann KA, Wahn U, Superti-Furga A, Heinzmann A. Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. American Journal of Respiratory and Critical Care Medicine. December 2005, 172 (12): 1505–9. PMC 2718453 . PMID 16179638. doi:10.1164/rccm.200506-890OC. 
  15. ^ Zhao J, Zhu H, Wong CH, Leung KY, Wong WS. Increased lungkine and chitinase levels in allergic airway inflammation: a proteomics approach. Proteomics. July 2005, 5 (11): 2799–807. PMID 15996009. doi:10.1002/pmic.200401169. 
  16. ^ Elias JA, Homer RJ, Hamid Q, Lee CG. Chitinases and chitinase-like proteins in T(H)2 inflammation and asthma. The Journal of Allergy and Clinical Immunology. September 2005, 116 (3): 497–500. PMID 16159614. doi:10.1016/j.jaci.2005.06.028. 
  17. ^ Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, Hamid Q, Elias JA. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. June 2004, 304 (5677): 1678–82. PMID 15192232. doi:10.1126/science.1095336. 
  18. ^ Chupp GL, Lee CG, Jarjour N, Shim YM, Holm CT, He S, Dziura JD, Reed J, Coyle AJ, Kiener P, Cullen M, Grandsaigne M, Dombret MC, Aubier M, Pretolani M, Elias JA. A chitinase-like protein in the lung and circulation of patients with severe asthma. The New England Journal of Medicine. November 2007, 357 (20): 2016–27. PMID 18003958. doi:10.1056/NEJMoa073600. 
  19. ^ Maizels RM. Infections and allergy - helminths, hygiene and host immune regulation. Current Opinion in Immunology. December 2005, 17 (6): 656–61. PMID 16202576. doi:10.1016/j.coi.2005.09.001. 
  20. ^ Hunter MM, McKay DM. Review article: helminths as therapeutic agents for inflammatory bowel disease. Alimentary Pharmacology & Therapeutics. January 2004, 19 (2): 167–77. PMID 14723608. doi:10.1111/j.0269-2813.2004.01803.x. 
  21. ^ Palmas C, Gabriele F, Conchedda M, Bortoletti G, Ecca AR. Causality or coincidence: may the slow disappearance of helminths be responsible for the imbalances in immune control mechanisms?. Journal of Helminthology. June 2003, 77 (2): 147–53. PMID 12756068. doi:10.1079/JOH2003176. 
  22. ^ Feingold BF. Food additives in clinical medicine. International Journal of Dermatology. March 1975, 14 (2): 112–4. PMID 1123257. doi:10.1111/j.1365-4362.1975.tb01426.x. 
  23. ^ 23.0 23.1 Langner T, Göhre V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Current Genetics. May 2016, 62 (2): 243–54. PMID 26527115. doi:10.1007/s00294-015-0530-x. 
  24. ^ Brunner K, Peterbauer CK, Mach RL, Lorito M, Zeilinger S, Kubicek CP. The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Current Genetics. July 2003, 43 (4): 289–95. PMID 12748812. doi:10.1007/s00294-003-0399-y. 
  25. ^ Kuranda MJ, Robbins PW. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. The Journal of Biological Chemistry. October 1991, 266 (29): 19758–67. PMID 1918080. 
  26. ^ Colman-Lerner A, Chin TE, Brent R. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell. December 2001, 107 (6): 739–50. PMID 11747810. doi:10.1016/S0092-8674(01)00596-7. 
  27. ^ Nelson B, Kurischko C, Horecka J, Mody M, Nair P, Pratt L, Zougman A, McBroom LD, Hughes TR, Boone C, Luca FC. RAM: a conserved signaling network that regulates Ace2p transcriptional activity and polarized morphogenesis. Molecular Biology of the Cell. September 2003, 14 (9): 3782–803. PMC 196567 . PMID 12972564. doi:10.1091/mbc.E03-01-0018. 
  28. ^ Latex-Fruit Syndrome and Class 2 Food Allergy. Division of Medical Devices, Japan. [2020-10-05]. (原始內容存檔於2020-11-11). 
  29. ^ 29.0 29.1 Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S. Chitinases: An update. Journal of Pharmacy & Bioallied Sciences. January 2013, 5 (1): 21–9. PMC 3612335 . PMID 23559820. doi:10.4103/0975-7406.106559. 

外部連結