幾何相位

經典力學量子力學中,幾何相位是當系統經歷了周期性絕熱過程的一個周期後獲得的相位差。這種相位差是由哈密頓量的參數空間的集合性質導致的。[1]

印度物理家Shivaramakrishnan Pancharatnam英語Shivaramakrishnan Pancharatnam(盤查拉特納姆,1956年)與 H.C.Longuet-Higgins (1958)分別獨立的在經典光學領域和分子物理領域發現了幾何相位,[2][3] 邁克爾·貝里推廣了這一現象(1984年)。[4]

幾何相位的其他名字包括Pancharatnam相位貝里相位

幾何相位例子包括阿哈羅諾夫–波姆效應潛在能量的表面[5]經典力學傅科擺[6]

度量量子力學的幾何相位需要干涉實驗

量子力學的相位

若系統處於第n個量子態,則通過哈密爾頓絕熱過程(或路徑積分表述):

 

其中的  是貝里相位,也可能寫為

 

所以貝里相位是貝里曲率的積分。R是參數,  是參數空間的回卷。

應用

參見

腳註

  1. ^ Solem, J. C.; Biedenharn, L. C. Understanding geometrical phases in quantum mechanics: An elementary example. Foundations of Physics. 1993, 23 (2): 185–195. Bibcode:1993FoPh...23..185S. doi:10.1007/BF01883623. 
  2. ^ S. Pancharatnam. Generalized Theory of Interference, and Its Applications. Part I. Coherent Pencils. Proc. Indian Acad. Sci. A. 1956, 44 (5): 247–262. doi:10.1007/BF03046050. 
  3. ^ H. C. Longuet Higgins; U. Öpik; M. H. L. Pryce; R. A. Sack. Studies of the Jahn-Teller effect .II. The dynamical problem. Proc. R. Soc. A. 1958, 244 (1236): 1–16. Bibcode:1958RSPSA.244....1L. doi:10.1098/rspa.1958.0022. See page 12
  4. ^ M. V. Berry. Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society A. 1984, 392 (1802): 45–57. Bibcode:1984RSPSA.392...45B. doi:10.1098/rspa.1984.0023. 
  5. ^ G. Herzberg; H. C. Longuet-Higgins. Intersection of potential energy surfaces in polyatomic molecules. Discuss. Faraday Soc. 1963, 35: 77–82. doi:10.1039/DF9633500077. 
  6. ^ 6.0 6.1 Wilczek, F.; Shapere, A. (編). Geometric Phases in Physics. Singapore: World Scientific. 1989: 4. 
  7. ^ Jens von Bergmann; HsingChi von Bergmann. Foucault pendulum through basic geometry. Am. J. Phys. 2007, 75 (10): 888–892. Bibcode:2007AmJPh..75..888V. doi:10.1119/1.2757623. 
  8. ^ C.Z.Ning and H. Haken. Geometrical phase and amplitude accumulations in dissipative systems with cyclic attractors. Phys. Rev. Lett. 1992, 68 (14): 2109–2122. Bibcode:1992PhRvL..68.2109N. PMID 10045311. doi:10.1103/PhysRevLett.68.2109. 
  9. ^ C.Z.Ning and H. Haken. The geometric phase in nonlinear dissipative systems. Mod. Phys. Lett. B. 1992, 6 (25): 1541–1568. Bibcode:1992MPLB....6.1541N. doi:10.1142/S0217984992001265.