大蒜素

化合物

大蒜素(英語:Allicin)是從石蒜科[1]蔥亞科蔥屬植物大蒜Allium Sativum)的鱗莖(大蒜頭)中提取的一種有機硫化合物,也存在於洋蔥和其他蔥科植物中。[2] 學名「二烯丙基硫代亞磺酸」(CH2=CH-CH2-S(=O)-S-CH2-CH=CH2[3][2][4][5]硫代亞硫酸英語Thiosulfinate(R-S(=O)-S-R)一族。

大蒜素
IUPAC名
2-propene-1-sulfinothioic acid S-2-propenyl ester
英文名 Allicin
別名 蒜辣素;蒜素;大蒜辣素;二烯丙基二硫-氧[S]化合物;大蒜新素
識別
CAS號 539-86-6  checkY
PubChem 65036
ChemSpider 58548
SMILES
 
  • C=CCS(=O)SCC=C
InChI
 
  • 1/C6H10OS2/c1-3-5-8-9(7)6-4-2/h3-4H,1-2,5-6H2
InChIKey JDLKFOPOAOFWQN-UHFFFAOYAO
Beilstein 1752823
EINECS 208-727-7
ChEBI 28411
KEGG C07600
MeSH Allicin
IUPHAR配體 2419
性質
化學式 C6H10OS2
摩爾質量 162.28 g·mol⁻¹
密度 1.112 g/cm3(20/4℃)
熔點 <25 °C
沸點 80~85 °C(0.2kPa,分解)
折光度n
D
1.561
若非註明,所有數據均出自標準狀態(25 ℃,100 kPa)下。

性質

大蒜素為淡黃色油狀液體。具有強烈的大蒜臭、味辣。不溶於水,與乙醇乙醚氯仿互溶。水溶液呈微酸性。對酸穩定,對熱鹼不穩定。蒸餾時分解。靜置時有油狀沉澱物產生。不穩定,23°C時可在16小時內分解。[6]

生產

一般從大蒜的鱗莖(大蒜頭)中提取,也可通過化學方法合成。用間氯過氧苯甲酸氧化二烯丙基二硫醚可得外消旋大蒜素。[7]

1944年首先由 Cavallito 分離出來。[8]

產生

一般認為,大蒜素的產生過程是大蒜粉碎後它所含的不穩定的蒜氨酸(1)經蒜氨酶分解為烯丙次磺酸(2)和脫氫丙氨酸(3),

 

然後不穩定的脫氫丙氨酸(3)立即分解為丙酮酸,而兩分子烯丙次磺酸(2)則歧化烯丙亞磺酸(4)與烯丙硫醇(5),它們繼續失水生成大蒜素(6):[9]

 


大蒜形成風味的機理與蔥頭十分相似,但粉碎過程中不會生成具有催淚性的中間體硫丙醛-S-氧化物。大蒜素對昆蟲和微生物有一定的毒性,它的產生是大蒜抵擋昆蟲進攻的自我防禦機制。[10]

分解

大蒜素遇熱分解為烯丙次磺酸(3)和烯丙硫醛(7),後者在常溫下發生Diels-Alder反應,二聚成3-乙烯基-1,2-二硫雜-5-環己烯(8)和2-乙烯基-1,3-二硫雜-5-環己烯(9)等。[11]

 


大蒜素在水和油介質中的分解產物有二烯丙基硫醚(包括二烯丙基一硫醚二烯丙基二硫醚二烯丙基三硫醚二烯丙基四硫醚等)、乙烯基二噻己烯和阿藿烯英語Ajoene等:[12]

 

代謝

在體內很快被吸收。在血液中分解為烯丙硫醇(Allyl mercaptan)(2)。後被S-腺苷甲硫氨酸甲基化為甲基烯丙基硫醚(3),從肺中排出。

一般認為大部分烯丙硫醇會被氧化為烯丙磺酸,類似於從半胱氨酸牛磺酸的轉化過程。[12]

 

功效

一些動物試驗和體外試驗表明大蒜素有抗菌頁面存檔備份,存於網際網路檔案館[13]抗真菌[8]消炎抗氧化[14][15][16]抗血栓[17]降血壓[18][19]、維持脂蛋白平衡、防治動脈硬化[20][21] 等功效。

一個2007年的臨床試驗結果是,對於膽固醇水平較高的病人,大蒜素不能降低血液膽固醇濃度。[22]

2009年,Vaidya、Ingold 和 Pratt 的研究表明大蒜素的生物功效主要是由大蒜素分解產生的2-丙烯次磺酸造成的,該化合物不穩定,很快便與體內的自由基發生反應使之失活。[23]

用途

提純的大蒜素可用作抗菌藥飼料添加劑殺蟲劑殺菌劑[24]

參見

參考資料

  1. ^ https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1095-8339.2009.00996.x頁面存檔備份,存於網際網路檔案館) 2009年蒜隸屬的蔥亞科由《被子植物APG III分類法》併入石蒜科中,已不再屬於百合科。
  2. ^ 2.0 2.1 Eric Block. The chemistry of garlic and onions. Scientific American. 1985, 252 (March): 114–9. PMID 3975593. doi:10.1038/scientificamerican0385-114. 
  3. ^ An Introduction to Organosulfur Chemistry, R. J. Cremlyn, John Wiley and Sons: Chichester (1996). ISBN 0471955124.
  4. ^ Eric Block, "Garlic and Other Alliums: The Lore and the Science" (Cambridge: Royal Society of Chemistry, 2010)
  5. ^ Cremlyn, R. J. W. An introduction to organosulfur chemistry. Wiley. 1996. ISBN 0-471-95512-4. 
  6. ^ Hahn, G; in Koch HP, Lawson LD, eds. Garlic: the science and therapeutic application of Allium sativum L and related species (2nd edn). Baltimore: Williams and Wilkins. 1996: 1–24. 
  7. ^ R. J. Cremlyn. An Introduction to Organosulfur Chemistry. Chichester: John Wiley and Sons. 1996. ISBN 0-471-95512-4. 
  8. ^ 8.0 8.1 Chester J. Cavallito, John Hays Bailey. Allicin, the Antibacterial Principle of Allium sativum. I. Isolation, Physical Properties and Antibacterial Action. J. Am. Chem. Soc. 1944, 66 (11): 1950–1951. doi:10.1021/ja01239a048. 
  9. ^ A. Stoll, E. Seebeck. Über den enzymatischen Abbau des Alliins und die Eigenschaften der Alliinase. 2. Mitteilung über Allium-Substanzen. Helv. Chim. Acta. 1949, 32 (1): 197–205. doi:10.1002/hlca.19490320129. 
  10. ^ Allicin. Phytochemicals. [2009-09-05]. (原始內容存檔於2009-09-25). 
  11. ^ Calvey EM, Roach JA, Block E. Supercritical fluid chromatography of garlic (Allium sativum) extracts with mass spectrometric identification of allicin. J. Chromatogr. Sci. 1994, 32 (3): 93–96. 
  12. ^ 12.0 12.1 Theodor Dingermann (Hrsg.), Rudolf Hänsel (Hrsg.) und Ilse Zündorf (Hrsg.): Pharmazeutische Biologie: Molekulare Grundlagen und klinische Anwendungen. Springer Verlag Berlin; 1. Auflage 2002; ISBN 3-540-42844-5; S. 62f.
  13. ^ Ankri, S; Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999, 2: 125–9. 
  14. ^ U. Sela, S. Ganor, I. Hecht, A. Brill, T. Miron, A. Rabinkov, M. Wilchek, D. Mirelman, O. Lider and R. Hershkoviz. Allicin inhibits SDF-1alpha-induced T cell interactions with fibronectin and endothelial cells by down-regulating cytoskeleton rearrangement, Pyk-2 phosphorylation and VLA-4 expression. Immunology. 2004, 111: 391–399. doi:10.1111/j.0019-2805.2004.01841.x. 
  15. ^ Lindsey J. Macpherson, Bernhard H. Geierstanger, Veena Viswanath, Michael Bandell, Samer R. Eid, SunWook Hwang, and Ardem Patapoutian. The pungency of garlic: Activation of TRPA1 and TRPV1 in response to allicin. Current Biology. 2005, 15 (May 24): 929–934.  外部連結存在於|title= (幫助)
  16. ^ Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE and Zygmunt PM. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA. 2005, 102 (34): 12248–52. PMID 16103371. doi:10.1073/pnas.0505356102. 
  17. ^ Srivastava KC. Evidence for the mechanism by which garlic inhibits platelet aggregation.. Prostaglandins Leukot Med. 1986, 22(3): 313–321. doi:10.1016/0262-1746(86)90142-3. 
  18. ^ Silagy CA, Neil HA. A meta-analysis of the effect of garlic on blood pressure. J Hypertens. 1994, 12(4): 463–468. 
  19. ^ A. Elkayam, D. Mirelman, E. Peleg, M. Wilchek, T. Miron, A. Rabinkov, M. Oron-Herman and T. Rosenthal. The effects of allicin on weight in fructose-induced hyperinsulinemic, hyperlipidemic, hypertensive rats. Am. J. Hypertens. 2003, 16: 1053–1056. doi:10.1016/j.amjhyper.2003.07.011. 
  20. ^ S. Eilat, Y. Oestraicher, A. Rabinkov, D. Ohad, D. Mirelman, A. Battler, M. Eldar and Z. Vered. Alteration of lipid profile in hyperlipidemic rabbits by allicin, an active constituent of garlic. Coron. Artery Dis. 1995, 6: 985–990. 
  21. ^ D. Abramovitz, S. Gavri, D. Harats, H. Levkovitz, D. Mirelman, T. Miron, S. Eilat-Adar, A. Rabinkov, M. Wilchek, M. Eldar and Z. Vered,. Allicin-induced decrease in formation of fatty streaks (atherosclerosis) in mice fed a cholesterol-rich diet. Coron. Artery Dis. 1999, 10: 515–519. doi:10.1097/00019501-199910000-00012. 
  22. ^ Gardner CD, Lawson LD, Block E; et al. Effect of raw garlic vs commercial garlic supplements on plasma lipid concentrations in adults with moderate hypercholesterolemia: a randomized clinical trial. Arch. Intern. Med. 2007, 167 (4): 346–53. PMID 17325296. doi:10.1001/archinte.167.4.346. 
  23. ^ Vaidya, Vipraja; Keith U. Ingold, Derek A. Pratt. Garlic: Source of the Ultimate Antioxidants - Sulfenic Acids. Angewandte Chemie. 2009, 121 (1): 163–166 [21 Feb 2009]. doi:10.1002/ange.200804560.  [永久失效連結]
  24. ^ 大蒜辣素;蒜素;蒜辣素;大蒜素. 化工引擎. [2009-09-05]. (原始內容存檔於2011-02-04).