函數
f
(
x
)
{\displaystyle f(x)}
梅林變換
f
~
(
s
)
=
M
{
f
}
(
s
)
{\displaystyle {\tilde {f}}(s)={\mathcal {M}}\{f\}(s)}
收斂域
注釋
e
−
x
{\displaystyle e^{-x}}
Γ
(
s
)
{\displaystyle \Gamma (s)}
0
<
ℜ
s
<
∞
{\displaystyle 0<\Re s<\infty }
e
−
x
−
1
{\displaystyle e^{-x}-1}
Γ
(
s
)
{\displaystyle \Gamma (s)}
−
1
<
ℜ
s
<
0
{\displaystyle -1<\Re s<0}
e
−
x
−
1
+
x
{\displaystyle e^{-x}-1+x}
Γ
(
s
)
{\displaystyle \Gamma (s)}
−
2
<
ℜ
s
<
−
1
{\displaystyle -2<\Re s<-1}
一般來說,
Γ
(
s
)
{\displaystyle \Gamma (s)}
是
e
−
x
−
∑
n
=
0
N
−
1
(
−
1
)
n
n
!
x
n
,
for
−
N
<
ℜ
s
<
−
N
+
1
{\displaystyle e^{-x}-\sum _{n=0}^{N-1}{\frac {(-1)^{n}}{n!}}x^{n},{\text{ for }}-N<\Re s<-N+1}
的梅林變換。[ 5]
e
−
x
2
{\displaystyle e^{-x^{2}}}
1
2
Γ
(
1
2
s
)
{\displaystyle {\tfrac {1}{2}}\Gamma ({\tfrac {1}{2}}s)}
0
<
ℜ
s
<
∞
{\displaystyle 0<\Re s<\infty }
e
r
f
c
(
x
)
{\displaystyle \mathrm {erfc} (x)}
Γ
(
1
2
(
1
+
s
)
)
π
s
{\displaystyle {\frac {\Gamma ({\tfrac {1}{2}}(1+s))}{{\sqrt {\pi }}\;s}}}
0
<
ℜ
s
<
∞
{\displaystyle 0<\Re s<\infty }
e
−
(
ln
x
)
2
{\displaystyle e^{-(\ln x)^{2}}}
π
e
1
4
s
2
{\displaystyle {\sqrt {\pi }}\,e^{{\tfrac {1}{4}}s^{2}}}
−
∞
<
ℜ
s
<
∞
{\displaystyle -\infty <\Re s<\infty }
δ
(
x
−
a
)
{\displaystyle \delta (x-a)}
a
s
−
1
{\displaystyle a^{s-1}}
−
∞
<
ℜ
s
<
∞
{\displaystyle -\infty <\Re s<\infty }
a
>
0
,
δ
(
x
)
{\displaystyle a>0,\;\delta (x)}
是狄拉克函數 。
u
(
1
−
x
)
=
{
1
if
0
<
x
<
1
0
if
1
<
x
<
∞
{\displaystyle u(1-x)=\left\{{\begin{aligned}&1&&\;{\text{if}}\;0<x<1&\\&0&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.}
1
s
{\displaystyle {\frac {1}{s}}}
0
<
ℜ
s
<
∞
{\displaystyle 0<\Re s<\infty }
u
(
x
)
{\displaystyle u(x)}
是單位階躍函數 。
−
u
(
x
−
1
)
=
{
0
if
0
<
x
<
1
−
1
if
1
<
x
<
∞
{\displaystyle -u(x-1)=\left\{{\begin{aligned}&0&&\;{\text{if}}\;0<x<1&\\&-1&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.}
1
s
{\displaystyle {\frac {1}{s}}}
−
∞
<
ℜ
s
<
0
{\displaystyle -\infty <\Re s<0}
u
(
1
−
x
)
x
a
=
{
x
a
if
0
<
x
<
1
0
if
1
<
x
<
∞
{\displaystyle u(1-x)\,x^{a}=\left\{{\begin{aligned}&x^{a}&&\;{\text{if}}\;0<x<1&\\&0&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.}
1
s
+
a
{\displaystyle {\frac {1}{s+a}}}
−
ℜ
a
<
ℜ
s
<
∞
{\displaystyle -\Re a<\Re s<\infty }
−
u
(
x
−
1
)
x
a
=
{
0
if
0
<
x
<
1
−
x
a
if
1
<
x
<
∞
{\displaystyle -u(x-1)\,x^{a}=\left\{{\begin{aligned}&0&&\;{\text{if}}\;0<x<1&\\&-x^{a}&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.}
1
s
+
a
{\displaystyle {\frac {1}{s+a}}}
−
∞
<
ℜ
s
<
−
ℜ
a
{\displaystyle -\infty <\Re s<-\Re a}
u
(
1
−
x
)
x
a
ln
x
=
{
x
a
ln
x
if
0
<
x
<
1
0
if
1
<
x
<
∞
{\displaystyle u(1-x)\,x^{a}\ln x=\left\{{\begin{aligned}&x^{a}\ln x&&\;{\text{if}}\;0<x<1&\\&0&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.}
1
(
s
+
a
)
2
{\displaystyle {\frac {1}{(s+a)^{2}}}}
−
ℜ
a
<
ℜ
s
<
∞
{\displaystyle -\Re a<\Re s<\infty }
−
u
(
x
−
1
)
x
a
ln
x
=
{
0
if
0
<
x
<
1
−
x
a
ln
x
if
1
<
x
<
∞
{\displaystyle -u(x-1)\,x^{a}\ln x=\left\{{\begin{aligned}&0&&\;{\text{if}}\;0<x<1&\\&-x^{a}\ln x&&\;{\text{if}}\;1<x<\infty &\end{aligned}}\right.}
1
(
s
+
a
)
2
{\displaystyle {\frac {1}{(s+a)^{2}}}}
−
∞
<
ℜ
s
<
−
ℜ
a
{\displaystyle -\infty <\Re s<-\Re a}
1
1
+
x
{\displaystyle {\frac {1}{1+x}}}
π
sin
(
π
s
)
{\displaystyle {\frac {\pi }{\sin(\pi s)}}}
0
<
ℜ
s
<
1
{\displaystyle 0<\Re s<1}
1
1
−
x
{\displaystyle {\frac {1}{1-x}}}
π
tan
(
π
s
)
{\displaystyle {\frac {\pi }{\tan(\pi s)}}}
0
<
ℜ
s
<
1
{\displaystyle 0<\Re s<1}
1
1
+
x
2
{\displaystyle {\frac {1}{1+x^{2}}}}
π
2
sin
(
1
2
π
s
)
{\displaystyle {\frac {\pi }{2\sin({\tfrac {1}{2}}\pi s)}}}
0
<
ℜ
s
<
2
{\displaystyle 0<\Re s<2}
ln
(
1
+
x
)
{\displaystyle \ln(1+x)}
π
s
sin
(
π
s
)
{\displaystyle {\frac {\pi }{s\,\sin(\pi s)}}}
−
1
<
ℜ
s
<
0
{\displaystyle -1<\Re s<0}
sin
(
x
)
{\displaystyle \sin(x)}
sin
(
1
2
π
s
)
Γ
(
s
)
{\displaystyle \sin({\tfrac {1}{2}}\pi s)\,\Gamma (s)}
−
1
<
ℜ
s
<
1
{\displaystyle -1<\Re s<1}
cos
(
x
)
{\displaystyle \cos(x)}
cos
(
1
2
π
s
)
Γ
(
s
)
{\displaystyle \cos({\tfrac {1}{2}}\pi s)\,\Gamma (s)}
0
<
ℜ
s
<
1
{\displaystyle 0<\Re s<1}
e
i
x
{\displaystyle e^{ix}}
e
i
π
s
/
2
Γ
(
s
)
{\displaystyle e^{i\pi s/2}\,\Gamma (s)}
0
<
ℜ
s
<
1
{\displaystyle 0<\Re s<1}
J
0
(
x
)
{\displaystyle J_{0}(x)}
2
s
−
1
π
sin
(
π
s
/
2
)
[
Γ
(
s
/
2
)
]
2
{\displaystyle {\frac {2^{s-1}}{\pi }}\,\sin(\pi s/2)\,\left[\Gamma (s/2)\right]^{2}}
0
<
ℜ
s
<
3
2
{\displaystyle 0<\Re s<{\tfrac {3}{2}}}
J
0
(
x
)
{\displaystyle J_{0}(x)}
是第一類貝塞爾函數 。
Y
0
(
x
)
{\displaystyle Y_{0}(x)}
−
2
s
−
1
π
cos
(
π
s
/
2
)
[
Γ
(
s
/
2
)
]
2
{\displaystyle -{\frac {2^{s-1}}{\pi }}\,\cos(\pi s/2)\,\left[\Gamma (s/2)\right]^{2}}
0
<
ℜ
s
<
3
2
{\displaystyle 0<\Re s<{\tfrac {3}{2}}}
Y
0
(
x
)
{\displaystyle Y_{0}(x)}
是第二類貝塞爾函數 。
K
0
(
x
)
{\displaystyle K_{0}(x)}
2
s
−
2
[
Γ
(
s
/
2
)
]
2
{\displaystyle 2^{s-2}\,\left[\Gamma (s/2)\right]^{2}}
0
<
ℜ
s
<
∞
{\displaystyle 0<\Re s<\infty }
K
0
(
x
)
{\displaystyle K_{0}(x)}
是第二類修正貝塞爾函數 。