量子漲落

量子力學中,量子漲落(英語:quantum fluctuation。或量子真空漲落真空漲落)是在空間任意位置對於能量的暫時變化。[1]維爾納·海森堡不確定性原理可以推導出這結論。

根據這原理的一種表述,能量的不確定性 與能量改變所需的時間 ,兩者之間的關係式為[2]

其中 約化普朗克常數

這意味著能量守恆定律好像被違反了,但是僅持續很短的時間。因此,在空間生成了由粒子反粒子組成的虛粒子對。粒子對借取能量而生成,又在短時間內湮滅歸還能量。這些產生的虛粒子的物理效應是可以被測量的,例如,電子的有效電荷與裸電荷不同。從量子電動力學蘭姆位移卡西米爾效應,可以觀測到這種效應。

量子漲落對於宇宙大尺度結構的起源非常重要,可以解釋宇宙為什麼會出現超星系團纖維狀結構這一類結構的問題:根據宇宙暴脹理論,宇宙初期是均勻的,均勻宇宙存在的微小量子漲落在暴脹之後被放大到宇宙尺度,成為最早的星系結構的種子。

場量子漲落

參見

引用

  1. ^ Browne, Malcolm W. New Direction in Physics: Back in Time. The New York Times. 1990-08-21 [2010-05-22]. (原始內容存檔於2016-06-03). According to quantum theory, the vacuum contains neither matter nor energy, but it does contain fluctuations, transitions between something and nothing in which potential existence can be transformed into real existence by the addition of energy.(Energy and matter are equivalent, since all matter ultimately consists of packets of energy.) Thus, the vacuum's totally empty space is actually a seething turmoil of creation and annihilation, which to the ordinary world appears calm because the scale of fluctuations in the vacuum is tiny and the fluctuations tend to cancel each other out. 
  2. ^ Mandelshtam, Leonid; Tamm, Igor, The uncertainty relation between energy and time in nonrelativistic quantum mechanics, Izv. Akad. Nauk SSSR (ser. Fiz.), 1945, 9: 122–128 [2012-09-17], (原始內容存檔於2019-06-07) . English translation: J. Phys. (USSR) 9, 249–254 (1945).

外部連結