量綱[1][2] (dimension,dimension of a physical quantity[3][4])又稱量綱,是指物理量的基本性質和特徵,它表示物理量與基本物理量(如長度、質量、時間、電流、溫度、物質的量和光強度)的關係。量綱的表示通常使用大寫字母,例如:長度),質量),溫度),電流),時間),物質的量),發光強度)。這些基本量綱可以組合形成複合量綱。例如,速度的量綱是長度除以時間,表示為 ;加速度的量綱是長度除以時間的平方,表示為 ;力的量綱是質量乘以加速度,表示為

通過量綱,可以分析物理量的性質、比較不同物理量之間的關係,以及檢驗物理方程的正確性。例如,如果兩邊的量綱不同,則方程必定是錯誤的。通過量綱分析,還可以簡化複雜的物理問題。例如,在進行實驗或計算時,通過無量綱化處理,可以減少變量的數量,使問題變得更易分析和解決。

由來

物理學中,不同的物理量有着不同的單位,然而這些單位之間都有相互的聯繫。實際上,恰當地規定一些基本的單位(稱為基本單位),可以使任何其他的單位(稱為導出單位)都表達為這些單位的乘積,將其統一以便於研究各個物理量之間的關係。如在國際單位制中,的單位焦耳 ),可以表示為「千克平方公尺每平方」( )。

然而,僅僅用單位來表示會面臨一些問題:

  1. 在不同的單位制下,各個物理量用單位來表示也會不同,以至於起不到預期的「統一各單位」的效果。如英里每小時(mph)與米每秒(m/s)乍看之下無甚聯繫,然而它們卻都是表示速度的單位。雖然說經過轉換可以將各個基本單位也統一,然而這樣終究不夠直觀,需記憶也不甚方便,而且選擇哪一個單位作為統一單位似乎都不甚公平。
  2. 把一個既有的單位表達為拆分了的基本單位的形式實際上沒有任何意義,功的單位無論如何都不是「千克二次方米每二次方秒」,因為實際上這個單位根本不存在,它只是與「焦耳」恰好相等而已。況且,這樣做也會導致一些拆分後相同但實質不同的單位被混淆,如力矩的單位牛米( )被拆分後也是 ,然而它與功顯然是完全不同的。

因此量綱被作為表達導出單位組成的專有方式引入物理學中。

表示方法

將一個物理導出量用若干個基本量的冪之積表示出來的表達式,稱為該物理量的量綱乘積式量綱式,亦簡稱量綱

規定七個基本物理量,在量綱中分別用七個字母表示它們的量綱,他們是:長度 ),質量 ),溫度 ),電流 ),時間 ),物質的量 ),發光強度 )。

則對於任意一個物理量 ,都可以寫出下列量綱式:

 

等號左邊也可以表示為 

上式右邊稱為物理量 的量綱。其中, 稱為量綱指數。在表示時,七個量綱不一定會全部用上。量綱指數為1的可以省略指數,指數為0的可以省略對應量綱;然而,當所有量綱指數皆為0時(稱為無量綱),要將量綱記為「1」。

  • 對於 
  • 對於磁感應強度 
  • 對於弧度 

值得注意的是,雖然物理量的量綱與取什麼單位無關,但量綱卻只有在一定的單位制下才有意義。[5]

量綱分析

量綱分析(Dimensional Analysis),又叫因次分析,是20世紀初提出的在物理領域中建立數學模型的一種方法。量綱分析就是在量綱法則的原則下,分析和探求物理量之間關係。

量綱分析的基礎是量綱法則。而在深層次運用中,幾乎都還會運用到白金漢π定理,以至於有時候把量綱分析直接看作了「運用Π定理進行無量綱化的過程」。[6]

量綱的乘除計算

對於不同物理量之間乘、除法導出新的物理量,量綱的計算滿足數學上的指數計算法則,即:相乘則對應指數相加,相除則對應指數相減。

例如,根據安培力計算公式 ,可導出磁感應強度的量綱,有

 

量綱法則

量綱服從的規律稱為量綱法則,它有廣泛的應用,一般只指出常用的兩條: 1.只有量綱相同的物理量,才能彼此相加、相減和相等; 2.指數函數、對數函數和三角函數的宗量應當是量綱1的。 量綱法則是量綱分析的基礎。若推出的公式不符合量綱法則,該式必然是錯誤的。[7]

π定理

π定理是由白金漢(E.Buckinghan)於1915年提出的一個定理,故又叫作白金漢定理。其內容為:

設影響某現象的物理量數為 個,這些物理量的基本量綱為 個,則該物理現象可用 個獨立的無量綱數群(准數)關係式表示。

用數學方式表示為:

設n個物理量之間滿足函數關係式:

 

其中, 為物理量。共包含有m個基本量綱(m<n)。則上述關係式與下列關係式等價:

 

其中 , 為無量綱量,F為未知函數關係。

 
舉例:粗糙平面上的一受恆力物體

設在水平面上有一質量為 的物體,受一水平力 的作用加速滑動,加速度為 ,物體與水平面之間的滑動摩擦因數為 ,重力加速度大小為 。則根據牛頓第二運動定律,可以寫出以下關係式:

 

式中有5個物理量,涉及到3個量綱(   ),根據Π定理,這個方程可以由兩個無量綱量表示。比如:

 

式中  皆為無量綱量,1為常數不加考慮。

於是,原來有五個未知量的式子就被轉化為只有兩個未知量的了。實際應用當然會比這個複雜得多,然而原理是一樣的。

π定理是量綱分析中一個非常重要的定理,它與量綱法則是量綱分析的兩大方法,它在建立模型和簡化物理過程方面有着巨大的用途。

量綱分析的主要用處

量綱分析是物理學的基礎之一,更在空氣動力學和流體力學中有重要應用。

  • 可以在不同的單位制間進行導出單位的換算。

如,在推導牛頓達因之間的換算關係時,已知 ,又知道牛頓使用國際單位制(千克米秒制),達因使用厘米克秒制,1 m = 100 cm,1 kg = 1000 g,於是

 
 


  • 驗證公式。在對一個公式躊躇不定的時候,可以對等號兩邊進行取量綱。因為根據量綱的一致性,只有量綱相同的物理量才能進行相加、相減、相等,故可用該方法排除一部分錯誤。(當然,這並不總是有效。)

比如,對於安培力公式 ,如果不慎記成 ,那麼在驗證時有,

 
 

顯然是不等的,那麼便可以得知公式錯誤;並且還可以知道是少了一個量綱 ,那麼便會更有方向性地尋找錯誤原因。


  • 為複雜公式提供線索,簡化複雜物理現象。

比如,對於單擺的周期,可以猜測它與單擺的質量 、擺長 和重力加速度 有關,於是假設

 

其中 為常數。兩邊取量綱,得

 

根據量綱的一致性,

 

解得x=0,y=0.5,z=-0.5,故

 

只需用實驗測出 的值就可以了。


流體力學中諸如湍流、流體阻力之類的問題,理論非常複雜,有時也常採用實驗的方式確定[8]。已經看到,在量綱法則上建立的Π定理把n元關係式簡化為n-m元關係式,於是在實際計算中只需要這n-m個值便可了解該物理過程了。力學涉及三個量綱(   ),因此通過無量綱化便減少了3個未知量,這實際上大大地簡化了實驗過程和理論計算。[9]

參見條目

參考文獻

書目

  • 鄭永令,賈啟明,方小敏. 《力学(第二版)》. 北京: 高等教育出版社. 2002. ISBN 978-7-04-011084-5. 

腳註

  1. ^ 量纲. 術語在線. 全國科學技術名詞審定委員會.  (簡體中文)
  2. ^ 基本因次. 樂詞網. 國家教育研究院.  (繁體中文)
  3. ^ Sandro G. Longo. Principles and Applications of Dimensional Analysis and Similarity. Springer Nature. 2022: 15. ISBN 9783030792176. 
  4. ^ Bunge, Mario. "A mathematical theory of the dimensions and units of physical quantities." Problems in the Foundations of Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1971. 1-16.
  5. ^ 流体力学. 上海交大工程力學教育基地. [2009年7月17日]. (原始內容存檔於2009年7月5日). 
  6. ^ 青砾 - 量纲分析的理论和方法. 青礫 - 鏤石為飾,刻事於心. [2009年7月18日]. (原始內容存檔於2016年3月4日). 
  7. ^ 參考《普通物理學教程:力學》中"1.4單位制和量綱"
  8. ^ 馬江權. 《化工原理实验》. 化學工業出版社. 2008. ISBN 978-7-5628-2445-9. 
  9. ^ 流体力学. 上海交大工程力學教育基地. [2009年7月17日]. (原始內容存檔於2005年4月14日).