𨭆

原子序數為108的化學元素

𨭆ㄏㄟ(英語:Hassium),是一種人工合成化學元素,其化學符號Hs原子序數為108。𨭆是一種放射性極強的超重元素錒系後元素,其所有同位素半衰期都很短,非常不穩定,其中壽命最長的是271Hs,半衰期僅約46秒。德國黑森邦達姆施塔特重離子研究所的研究團隊在1984年首次合成出𨭆元素,並以黑森邦命名此元素。到目前為止,多個研究通過不同的核反應,一共合成了超過100個𨭆原子,有的是母原子核,有的是更重元素的衰變產物[來源請求]

𨭆108Hs
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) (預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)


𨭆

(Upo)
𨨏𨭆
外觀
銀白色(預測)[1]
概況
名稱·符號·序數𨭆(Hassium)·Hs·108
元素類別過渡金屬
·週期·8·7·d
標準原子質量[271]
電子排布[Rn] 5f14 6d6 7s2
(預測[2]
2, 8, 18, 32, 32, 14, 2(預測)
<span class="inline-unihan" style="border-bottom: 1px dotted; font-variant: normal;cursor: help; font-family: sans-serif, &#039;FZSongS-Extended&#039;, &#039;FZSongS-Extended(SIP)&#039;, &#039;WenQuanYi Zen Hei Mono&#039;, &#039;BabelStone Han&#039;, &#039;HanaMinB&#039;, &#039;FZSong-Extended&#039;, &#039;Arial Unicode MS&#039;, Code2002, DFSongStd, &#039;STHeiti SC&#039;, unifont, SimSun-ExtB, TH-Tshyn-P0, TH-Tshyn-P1, TH-Tshyn-P2, Jigmo3, Jigmo2, Jigmo, ZhongHuaSongPlane15, ZhongHuaSongPlane02, ZhongHuaSongPlane00, &#039;Plangothic P1&#039;, &#039;Plangothic P2&#039;;" title="字符描述:⿰金黑 &#10;※如果您看到空白、方塊或問號,代表您的系統無法顯示此字元。">𨭆</span>的電子層(2, 8, 18, 32, 32, 14, 2(預測))
𨭆的電子層(2, 8, 18, 32, 32, 14, 2(預測))
歷史
發現重離子研究所(1984年)
物理性質
物態固態(預測)
密度(接近室溫
41(預測)[2] g·cm−3
原子性質
氧化態8, 6, 5, 4, 3, 2(預測)[1][2][3]
(實驗證實的氧化態以粗體顯示)
電離能第一:733.3(估值)[2] kJ·mol−1
第二:1756.0(估值)[2] kJ·mol−1
第三:2827.0(估值)[2] kJ·mol−1
更多
原子半徑126(估值)[2] pm
共價半徑134(估值)[4] pm
雜項
CAS號54037-57-9
同位素
主條目:𨭆的同位素
同位素 豐度 半衰期t1/2 衰變
方式 能量MeV 產物
269Hs 人造 13 [5] α 9.27? 265Sg
270Hs 人造 α 9.07 266Sg
271Hs[5] 人造 46  α 9.48 267Sg

𨭆8族中最重的元素,實驗證明,𨭆是典型的8族過渡金屬,具穩定的+8氧化態,能形成揮發性四氧化物,類似於同族的

概論

超重元素的合成

 
核融合反應的圖示。兩個原子核融合成一個,並發射出一個中子。這個反應和用來創造新元素的反應相似,唯一可能的區別是它有時會釋放幾個中子,或者根本不釋放中子。
外部影片連結
  基於澳大利亞國立大學的計算,核聚變未成功的可視化[6]

超重元素[a]原子核是在兩個不同大小的原子核[b]的聚變中產生的。粗略地說,兩個原子核的質量之差越大,兩者就越有可能發生反應。[12]由較重原子核組成的物質會作為靶子,被較輕原子核的粒子束轟擊。兩個原子核只能在距離足夠近的時候,才能聚變成一個原子核。原子核都帶正電荷,會因為靜電排斥力而相互排斥,所以只有兩個原子核的距離足夠短時,強核力才能克服這個排斥力並發生聚變。粒子束因此被粒子加速器大大加速,以使這種排斥力與粒子束的速度相比變得微不足道。[13]施加到粒子束上以加速它們的能量可以使它們的速度達到光速的十分之一。但是,如果施加太多能量,粒子束可能會分崩離析。[13]

不過,只是靠得足夠近不足以使兩個原子核聚變:當兩個原子核逼近彼此時,它們通常會融為一體約10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成單一的原子核。[13][14]這是因為在嘗試形成單個原子核的過程中,靜電排斥力會撕開正在形成的原子核。[13]每一對目標和粒子束的特徵在於其截面,即兩個原子核彼此接近時發生聚變的概率。[c]這種聚變是量子效應的結果,其中原子核可通過量子穿隧效應克服靜電排斥力。如果兩個原子核可以在該階段之後保持靠近,則多個核相互作用會導致能量的重新分配和平衡。[13]

兩個原子核聚變產生的原子核處於非常不穩定,[13]被稱為複合原子核英語compound nucleus激發態[16]複合原子核為了達到更穩定的狀態,可能會直接裂變[17]或是放出一些中子來帶走激發能量。如果激發能量太小,無法放出中子,複合原子核就會放出γ射線來帶走激發能量。這個過程會在原子核碰撞後的10−16秒發生,並創造出更穩定的原子核。[17]原子核只有在10−14秒內不衰變IUPAC/IUPAP聯合工作小組才會認為它是化學元素。這個值大約是原子核得到它的外層電子,顯示其化學性質所需的時間。[18][d]

衰變和探測

粒子束穿過目標後,會到達下一個腔室——分離室。如果反應產生了新的原子核,它就會存在於這個粒子束中。[20]在分離室中,新的原子核會從其它核素(原本的粒子束和其它反應產物)中分離,[e]到達半導體探測器英語Semiconductor detector後停止。這時標記撞擊探測器的確切位置、能量和到達時間。[20]這個轉移需要10−6秒的時間,因此原子核需要存在這麼長的時間才能被檢測到。[23]若衰變發生,衰變的原子核被再次記錄,並測量位置、衰變能量和衰變時間。[20]

原子核的穩定性源自於強核力,但強核力的作用距離很短,隨着原子核越來越大,強核力對最外層的核子質子和中子)的影響減弱。同時,原子核會被質子之間,範圍不受限制的靜電排斥力撕裂。[24]強核力提供的核結合能以線性增長,而靜電排斥力則以原子序數的平方增長。後者增長更快,對重元素和超重元素而言變得越來越重要。[25][26]超重元素理論預測[27]及實際觀測到[28]的主要衰變方式,即α衰變自發裂變都是這種排斥引起的。[f]幾乎所有會α衰變的核素都有超過210個核子,[30]而主要通過自發裂變衰變的最輕核素有238個核子。[28]有限位勢壘在這兩種衰變方式中抑制了原子核衰變,但原子核可以隧穿這個勢壘,發生衰變。[25][26]

 
基於在杜布納聯合原子核研究所中設置的杜布納充氣反衝分離器,用於產生超重元素的裝置方案。在檢測器和光束聚焦裝置內的軌跡會因為前者的磁偶極英語Magnetic dipole和後者的四極磁體英語Quadrupole magnet而改變。[31]

放射性衰變中常產生α粒子是因為α粒子中的核子平均質量足夠小,足以使α粒子有多餘能量離開原子核。[32]自發裂變則是由靜電排斥力將原子核撕裂而致,會產生各種不同的產物。[26]隨着原子序數增加,自發裂變迅速變得重要:自發裂變的部分半衰期從92號元素到102號元素下降了23個數量級,[33]從90號元素到100號元素下降了30個數量級。[34]早期的液滴模型因此表明有約280個核子的原子核的裂變勢壘英語Fission barrier會消失,因此自發裂變會立即發生。[26][35]之後的核殼層模型表明有大約300個核子的原子核將形成一個穩定島,其中的原子核不易發生自發裂變,而是會發生半衰期更長的α衰變。[26][35]隨後的研究發現預測存在的穩定島可能比原先預期的更遠,還發現長壽命錒系元素和穩定島之間的原子核發生變形,獲得額外的穩定性。[36]對較輕的超重核素[37]以及那些更接近穩定島的核素[33]的實驗發現它們比先前預期的更難發生自發裂變,表明核殼層效應變得重要。[g]

α衰變由發射出去的α粒子記錄,在原子核衰變之前就能確定衰變產物。如果α衰變或連續的α衰變產生了已知的原子核,則可以很容易地確定反應的原始產物。[h]因為連續的α衰變都會在同一個地方發生,所以通過確定衰變發生的位置,可以確定衰變彼此相關。[20]已知的原子核可以通過它經歷的衰變的特定特徵來識別,例如衰變能量(或更具體地說,發射粒子的動能)。[i]然而,自發裂變會產生各種分裂產物,因此無法從其分裂產物確定原始核素。[j]

嘗試合成超重元素的物理學家可以獲得的信息是探測器收集到的信息,即原子核到達探測器的位置、能量、時間以及它衰變的信息。他們分析這些數據並試圖得出結論,確認它確實是由新元素引起的。如果提供的數據不足以得出創造出來的核素確實是新元素的結論,且對觀察到的現象沒有其它解釋,就可能在解釋數據時出現錯誤。[k]

歷史

發現

1984年,由彼得·安布魯斯特哥特佛萊德·明岑貝格英語Gottfried Münzenberg領導的研究隊於德國達姆施塔特重離子研究所首次進行了𨭆的合成反應。團隊以58Fe原子核撞擊目標體,製造出3個265Hs原子,反應如下:

 

IUPAC/IUPAP超鐨元素工作組在1992年的一份報告中承認,重離子研究所是𨭆的正式發現者。[48]

命名

𨭆曾經被稱為eka。在命名爭議期間,IUPAC使用的臨時系統名稱是Unniloctium(符號為Uno),來自數字1、0、8的拉丁語寫法。

德國發現者在1992年正式提出使用Hassium作為108號元素的名稱,取自研究所所在地德國黑森州拉丁語名(Hassia)。

1994年,IUPAC的一個委員會建議把元素108命名為Hahnium(Hn),[49]雖然長期的慣例是把命名權留給發現者。在德國發現者抗議之後,1997年8月27日IUPAC正式對國際上分歧較大的101至109號元素的重新英文定名中,國際承認了現用名稱Hassium作為108號元素的命名。[50]

全國科學技術名詞化學名詞審定委員會據此於1998年7月8日重新審定、公佈101至109號元素的中文命名,其中首次給出108號元素中文名:「𨭆」(hēi,音同「黑」)[51],名稱根據IUPAC決定的英文名Hassium,源自發現該元素的德國重離子研究所所在的德國黑森州。[52][53]

同位素

𨭆的同位素列表
同位素 半衰期[l] 衰變方式 發現年份[28] 發現方法[54][m]
數值 來源
263Hs 900 μs [28] α 2009年 208Pb(56Fe,n)
264Hs 700 ms [28] α, SF 1986年 207Pb(58Fe,n)
265Hs 1.96 ms [28] α 1984年 208Pb(58Fe,n)
265mHs 360 μs [28] α 1995年 208Pb(58Fe,n)
266Hs 3.0 ms [28] α, SF 2001年 270Ds(—,α)
266mHs 280 ms [28] α 2011年 270mDs(—,α)
267Hs 55 ms [28] α 1995年 238U(34S,5n)
267mHs 990 μs [28] α 2004年 238U(34S,5n)
268Hs 1.4 s [28] α 2010年 238U(34S,4n)
269Hs 13 s [5] α 1996年 277Cn(—,2α)
270Hs 9 s [28] α 2003年 248Cm(26Mg,4n)
271Hs 46 s [5] α 2008年 248Cm(26Mg,3n)
272Hs 160 ms [55] α 2022年 276Ds(—,α)
273Hs 510 ms [56] α 2010年 285Fl(—,3α)
275Hs 600 ms [57] α 2004年 287Fl(—,3α)
277Hs 18 ms [58] SF 2010年 289Fl(—,3α)
277mHs 130 s[n] [28] SF 2012年 293mLv(—,4α)

目前已知的𨭆同位素有12個,全部都具有極高的放射性半衰期極短,非常不穩定。其中壽命最長的是𨭆-271,半衰期約46秒。不過,未確認的277mHs可能有更長的130秒半衰期。

化學特性

推算的化學特性

氧化態

𨭆預計為過渡金屬中6d系的第5個元素及8族中最重的元素,在週期表中位於之下。該族中的後兩個元素表現出的氧化態為+8,而這種氧化態在族中越到下方越為穩定。因此𨭆的氧化態應為+8。鋨同時還有穩定的+5、+4及+3態,其中+4態最為穩定。而釕則同時有+6、+5及+3態,當中+3態最為穩定。𨭆也因此預計擁有穩定的低氧化態。

化合物

第8族元素獨特的氧化物化學使對𨭆元素特性的推算更為容易。同族較輕的元素都已知擁有或預測擁有四氧化物,MO4。一直向下,該族的氧化力逐漸下降:FeO4[59]並不存在,因為極高的電子親合能使其形成常見的FeO42−。釕(VI)在中經過氧化後形成四氧化釕,RuO4,而四氧化釕經過還原反應後形成RuO42−。釕金屬在空氣中氧化後形成二氧化釕,RuO2。對比之下,鋨燃燒後產生穩定的四氧化鋨,OsO4,然後與氫氧根離子產生配合物[OsO4(OH)2]2−。因此,作為鋨對下的元素,𨭆應該會形成揮發性四氧化𨭆,HsO4,再與氫氧根離子配合形成[HsO4(OH)2]2−

密度

𨭆預計體積密度為41 g/cm3,是所有118個已知元素中最高的,幾乎為的兩倍,而鋨是目前已測量的元素中密度最高的,有22.6 g/cm3。這是由於𨭆擁有高原子量,並加上鑭系與錒系收縮效應和相對論性效應,但是真正製造足夠𨭆元素以測量其密度是不可行的,因為樣本會即刻進行衰變。[60]

實驗性化學

氣態化學

𨭆的電子排佈預計為[Rn]5f14 6d6 7s2,因此𨭆應會產生揮發性四氧化物HsO4。其揮發性是由於該分子的四面體形。

𨭆的首次化學實驗在2001年進行,運用了熱色譜分析法,以172Os作為參照物。利用反應248Cm(26Mg,5n)269Hs,實驗探測到5個𨭆原子。產生的原子在He/O2混合物中經過熱能化及氧化後產生氧化物。

269
108
Hs
+ 2 O
2
269
108
Hs
O
4

所測量到的熱離解溫度表示四氧化𨭆的揮發性比四氧化鋨低,同時也肯定了𨭆的特性屬於8族。[61][62]

為了進一步探測𨭆的化學屬性,科學家決定研究四氧化𨭆氫氧化鈉間產生的𨭆酸鈉的反應。該反應是鋨的一條常見反應。在2004 年,科學家公佈成功進行了第一次對𨭆化合物的酸鹼反應: [63]

HsO
4
+ 2 NaOH → Na
2
[HsO
4
(OH)
2
]

化合物與絡離子

公式 名稱
HsO4 四氧化𨭆
Na
2
[HsO
4
(OH)
2
]
𨭆酸鈉、二羥基四氧𨭆酸鈉

注釋

  1. ^ 核物理學中,原子序高的元素可稱為重元素,如82號元素。超重元素通常指原子序大於103(也有大於100[7]或112[8]的定義)的元素。有定義認為超重元素等同於錒系後元素,因此認為還未發現的超錒系元素不是超重元素。[9]
  2. ^ 2009年,由尤里·奧加涅相引領的團隊發表了他們嘗試通過對稱的136Xe + 136Xe反應合成𨭆的結果。他們未能在這個反應中觀察到單個原子,因此設置截面,即發生核反應的概率的上限為2.5 pb[10]作為比較,發現𨭆的反應208Pb + 58Fe的截面為19+19
    -11
     pb。[11]
  3. ^ 施加到粒子束以加速它的能量也會影響截面。舉個例子,在28
    14
    Si
    + 1
    0
    n
    28
    13
    Al
    + 1
    1
    p
    反應中,截面會從12.3 MeV的370 mb變化成18.3 MeV的160 mb,最高值是13.5 MeV的380 mb。[15]
  4. ^ 這個值也是普遍接受的複合原子核壽命上限。[19]
  5. ^ 分離基於產生的原子核會比未反應的粒子束更慢地通過目標這一點。分離器中包含電場和磁場,它們對運動粒子的影響會因粒子的特定速度而被抵消。[21]飛行時間質譜法英語Time-of-flight mass spectrometry和反衝能量的測量也有助於分離,兩者結合可以估計原子核的質量。[22]
  6. ^ 不是所有放射性衰變都是因為靜電排斥力導致的,β衰變便是弱核力導致的。[29]
  7. ^ 早在1960年代,人們就已經知道原子核的基態在能量和形狀上的不同,也知道核子數為幻數時,原子核就會更穩定。然而,當時人們假設超重元素的原子核因為過於畸形,無法形成核子結構。[33]
  8. ^ 超重元素的原子核的質量通常無法直接測量,所以是根據另一個原子核的質量間接計算得出的。[38]2018年,勞倫斯伯克利國家實驗室首次直接測量了超重原子核的質量,[39]它的質量是根據轉移後原子核的位置確定的(位置有助於確定其軌跡,這與原子核的質荷比有關,因為轉移是在有磁鐵的情況下完成的)。[40]
  9. ^ 如果在真空中發生衰變,那麼由於孤立系統在衰變前後的總動量必須保持守恆,衰變產物也將獲得很小的速度。這兩個速度的比值以及相應的動能比值與兩個質量的比值成反比。衰變能量等於α粒子和衰變產物的已知動能之和。[30]這些計算也適用於實驗,但不同之處在於原子核在衰變後不會移動,因為它與探測器相連。
  10. ^ 自發裂變由蘇聯科學家格奧爾基·弗廖羅夫發現,[41]而他也是杜布納聯合原子核研究所的科學家,所以自發裂變就成了杜布納聯合原子核研究所經常討論的課題。[42]勞倫斯伯克利國家實驗室的科學家認為自發裂變的信息不足以聲稱合成元素,他們認為對自發裂變的研究還不夠充分,無法將其用於識別新元素,因為很難確定複合原子核是不是僅噴射中子,而不是質子或α粒子等帶電粒子。[19]因此,他們更喜歡通過連續的α衰變將新的同位素與已知的同位素聯繫起來。[41]
  11. ^ 舉個例子,1957年,瑞典斯德哥爾摩省斯德哥爾摩的諾貝爾物理研究所錯誤鑑定102號元素。[43]早先沒有關於該元素發現的明確聲明,所以瑞典、美國、英國發現者將其命名為nobelium。後來證明該鑑定是錯誤的。[44]次年,勞倫斯伯克利國家實驗室無法重現瑞典的結果。他們宣布合成了該元素,但後來也被駁回。[44]杜布納聯合原子核研究所堅持認為他們第一個發現該元素,並建議把新元素命名為joliotium,[45]而這個名稱也沒有被接受(他們後來認為102號元素的命名是倉促的)。[46]由於nobelium這個名稱在三十年間已被廣泛使用,因此沒有更名。[47]
  12. ^ 不同的來源會給出不同的數值,所以這裡列出最新的數值。
  13. ^ 208Pb(56Fe,n)263Hs這一寫法指的是用56Fe轟擊208Pb,二者融合之後放出一粒中子,產生263Hs。此反應也可以寫成208Pb + 56Fe → 263Hs + n
  14. ^ 至今只觀測到一次衰變

參考資料

  1. ^ 1.0 1.1 Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements New. New York, NY: Oxford University Press. 2011: 215–7. ISBN 978-0-19-960563-7. 
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Haire, Richard G. Transactinides and the future elements. Morss; Edelstein, Norman M.; Fuger, Jean (編). The Chemistry of the Actinide and Transactinide Elements 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1. 
  3. ^ Investigation of group 8 metallocenes @ TASCA頁面存檔備份,存於網際網路檔案館), C.E. Dullman
  4. ^ Chemical Data. Hassium - Hs頁面存檔備份,存於網際網路檔案館), Royal Chemical Society
  5. ^ 5.0 5.1 5.2 5.3 Oganessian, Yu. Ts.; Utyonkov, V. K.; et al. Synthesis and decay properties of isotopes of element 110: 273Ds and 275Ds. Physical Review C. 2024-05-06, 109 (5). ISSN 2469-9985. doi:10.1103/PhysRevC.109.054307. 
  6. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al , 編. Comparing Experimental and Theoretical Quasifission Mass Angle Distributions. European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061 . 
  7. ^ Krämer, K. Explainer: superheavy elements. Chemistry World. 2016 [2020-03-15]. (原始內容存檔於2021-05-15) (英語). 
  8. ^ Discovery of Elements 113 and 115. Lawrence Livermore National Laboratory. [2020-03-15]. (原始內容存檔於2015-09-11). 
  9. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. Electronic Structure of the Transactinide Atoms. Scott, R. A. (編). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英語). 
  10. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe. Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英語). 
  11. ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. The identification of element 108 (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [20 October 2012]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始內容 (PDF)存檔於7 June 2015). 
  12. ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. (原始內容存檔於2019-12-11). 
  13. ^ 13.0 13.1 13.2 13.3 13.4 13.5 Ivanov, D. Сверхтяжелые шаги в неизвестное [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02]. (原始內容存檔於2020-04-23) (俄語). 
  14. ^ Hinde, D. Something new and superheavy at the periodic table. The Conversation. 2017 [2020-01-30]. (原始內容存檔於2020-03-17) (英語). 
  15. ^ Kern, B. D.; Thompson, W. E.; Ferguson, J. M. Cross sections for some (n, p) and (n, α) reactions. Nuclear Physics. 1959, 10: 226–234. doi:10.1016/0029-5582(59)90211-1 (英語). 
  16. ^ Nuclear Reactions (PDF): 7–8. [2020-01-27]. (原始內容存檔 (PDF)於2020-11-30).  Published as Loveland, W. D.; Morrissey, D. J.; Seaborg, G. T. Nuclear Reactions. Modern Nuclear Chemistry. John Wiley & Sons, Inc. 2005: 249–297. ISBN 978-0-471-76862-3. doi:10.1002/0471768626.ch10 (英語). 
  17. ^ 17.0 17.1 Krása, A. Neutron Sources for ADS. Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927. 
  18. ^ Wapstra, A. H. Criteria that must be satisfied for the discovery of a new chemical element to be recognized (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883 [2021-11-28]. ISSN 1365-3075. doi:10.1351/pac199163060879. (原始內容存檔 (PDF)於2021-10-11) (英語). 
  19. ^ 19.0 19.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. A History and Analysis of the Discovery of Elements 104 and 105. Radiochimica Acta. 1987, 42 (2): 67–68 [2021-11-27]. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. (原始內容存檔於2021-11-27). 
  20. ^ 20.0 20.1 20.2 20.3 Chemistry World. How to Make Superheavy Elements and Finish the Periodic Table [Video]. Scientific American. 2016 [2020-01-27]. (原始內容存檔於2020-04-21) (英語). 
  21. ^ Hoffman, Ghiorso & Seaborg 2000,第334頁.
  22. ^ Hoffman, Ghiorso & Seaborg 2000,第335頁.
  23. ^ Zagrebaev, V.; Karpov, A.; Greiner, W. Future of superheavy element research: Which nuclei could be synthesized within the next few years?. Journal of Physics: Conference Series. 2013, 420: 3. ISSN 1742-6588. doi:10.1088/1742-6596/420/1/012001 . 
  24. ^ Beiser 2003,第432頁.
  25. ^ 25.0 25.1 Pauli, N. Alpha decay (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始內容存檔 (PDF)於2021-11-28). 
  26. ^ 26.0 26.1 26.2 26.3 26.4 Pauli, N. Nuclear fission (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始內容存檔 (PDF)於2021-10-21). 
  27. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory. Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320 . 
  28. ^ 28.00 28.01 28.02 28.03 28.04 28.05 28.06 28.07 28.08 28.09 28.10 28.11 28.12 28.13 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 2021, 45 (3): 030001. doi:10.1088/1674-1137/abddae. 
  29. ^ Beiser 2003,第439頁.
  30. ^ 30.0 30.1 Beiser 2003,第433頁.
  31. ^ Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. On the volatility of nihonium (Nh, Z = 113). The European Physical Journal A. 2017, 53 (7): 158. ISSN 1434-6001. doi:10.1140/epja/i2017-12348-8 (英語). 
  32. ^ Beiser 2003,第432–433頁.
  33. ^ 33.0 33.1 33.2 Oganessian, Yu. Nuclei in the "Island of Stability" of Superheavy Elements. Journal of Physics: Conference Series. 2012, 337: 012005–1–012005–6. ISSN 1742-6596. doi:10.1088/1742-6596/337/1/012005 . 
  34. ^ Moller, P.; Nix, J. R. Fission properties of the heaviest elements (PDF). Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. University of North Texas. 1994 [2020-02-16]. (原始內容存檔 (PDF)於2021-11-01). 
  35. ^ 35.0 35.1 Oganessian, Yu. Ts. Superheavy elements. Physics World. 2004, 17 (7): 25–29 [2020-02-16]. doi:10.1088/2058-7058/17/7/31. (原始內容存檔於2021-11-28). 
  36. ^ Schädel, M. Chemistry of the superheavy elements. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015, 373 (2037): 20140191. ISSN 1364-503X. PMID 25666065. doi:10.1098/rsta.2014.0191  (英語). 
  37. ^ Hulet, E. K. Biomodal spontaneous fission. 50th Anniversary of Nuclear Fission, Leningrad, USSR. 1989. Bibcode:1989nufi.rept...16H. 
  38. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. A beachhead on the island of stability. Physics Today. 2015, 68 (8): 32–38 [2021-11-28]. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. (原始內容存檔於2021-11-28) (英語). 
  39. ^ Grant, A. Weighing the heaviest elements. Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英語). 
  40. ^ Howes, L. Exploring the superheavy elements at the end of the periodic table. Chemical & Engineering News. 2019 [2020-01-27]. (原始內容存檔於2021-11-28) (英語). 
  41. ^ 41.0 41.1 Robinson, A. E. The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War. Distillations. 2019 [2020-02-22]. (原始內容存檔於2021-11-28) (英語). 
  42. ^ Популярная библиотека химических элементов. Сиборгий (экавольфрам) [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru. [2020-01-07]. (原始內容存檔於2011-08-23) (俄語).  Reprinted from Экавольфрам [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. 1977 (俄語). 
  43. ^ Nobelium - Element information, properties and uses | Periodic Table. Royal Society of Chemistry. [2020-03-01]. (原始內容存檔於2021-03-08) (英語). 
  44. ^ 44.0 44.1 Kragh 2018,第38–39頁.
  45. ^ Kragh 2018,第40頁.
  46. ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [2016-09-07]. doi:10.1351/pac199365081815. (原始內容存檔 (PDF)於2013-11-25) (英語). 
  47. ^ Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474 [2021-11-28]. doi:10.1351/pac199769122471. (原始內容存檔 (PDF)於2021-10-11) (英語). 
  48. ^ Barber, R. C.; Greenwood, N. N.; Hrynkiewicz, A. Z.; Jeannin, Y. P.; Lefort, M.; Sakai, M.; Ulehla, I.; Wapstra, A. P.; Wilkinson, D. H. Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879-886, 1991). Pure and Applied Chemistry. 1993, 65 (8): 1757. doi:10.1351/pac199365081757. 
  49. ^ Names and symbols of transfermium elements (IUPAC Recommendations 1994). Pure and Applied Chemistry. 1994, 66 (12): 2419. doi:10.1351/pac199466122419. 
  50. ^ Names and symbols of transfermium elements (IUPAC Recommendations 1997). Pure and Applied Chemistry. 1997, 69 (12): 2471. doi:10.1351/pac199769122471. 
  51. ^ 中國化學會無機化學名詞小組修訂. 无机化学命名原则 : 1980, 统一书号:13031·2078. 1982-12: 4-5 [2020-11-10]. (原始內容存檔於2021-09-22). 
  52. ^ 劉路沙. 101—109号元素有了中文定名. 光明網. 光明日報. [2020-11-10]. (原始內容存檔於2020-11-10). 
  53. ^ 貴州地勘局情報室摘於《中國地質礦產報》(1998年8月13日). 101~109号化学元素正式定名. 貴州地質. 1998, 15: 298–298 [2020-11-10]. (原始內容存檔於2020-12-03). 
  54. ^ Thoennessen, M. The Discovery of Isotopes: A Complete Compilation. Springer. 2016: 229, 234, 238. ISBN 978-3-319-31761-8. LCCN 2016935977. doi:10.1007/978-3-319-31763-2. 
  55. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Shumeiko, M. V.; et al. New isotope 276Ds and its decay products 272Hs and 268Sg from the 232Th + 48Ca reaction. Physical Review C. 2023, 108 (24611): 024611. Bibcode:2023PhRvC.108b4611O. S2CID 261170871. doi:10.1103/PhysRevC.108.024611. 
  56. ^ Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; et al. Neutron-deficient superheavy nuclei obtained in the 240Pu+48Ca reaction. Physical Review C. 30 January 2018, 97 (14320): 014320. Bibcode:2018PhRvC..97a4320U. doi:10.1103/PhysRevC.97.014320 . 
  57. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. Investigation of 48Ca-induced reactions with 242Pu and 238U targets at the JINR Superheavy Element Factory. Physical Review C. 2022, 106 (24612): 024612. Bibcode:2022PhRvC.106b4612O. S2CID 251759318. doi:10.1103/PhysRevC.106.024612. 
  58. ^ Cox, D. M.; Såmark-Roth, A.; Rudolph, D.; Sarmiento, L. G.; Clark, R. M.; Egido, J. L.; Golubev, P.; Heery, J.; Yakushev, A.; Åberg, S.; Albers, H. M.; Albertsson, M.; Block, M.; Brand, H.; Calverley, T.; Cantemir, R.; Carlsson, B. G.; Düllmann, Ch. E.; Eberth, J.; Fahlander, C.; Forsberg, U.; Gates, J. M.; Giacoppo, F.; Götz, M.; Götz, S.; Herzberg, R.-D.; Hrabar, Y.; Jäger, E.; Judson, D.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Kratz, J. V.; Krier, J.; Kurz, N.; Lens, L.; Ljungberg, J.; Lommel, B.; Louko, J.; Meyer, C.-C.; Mistry, A.; Mokry, C.; Papadakis, P.; Parr, E.; Pore, J. L.; Ragnarsson, I.; Runke, J.; Schädel, M.; Schaffner, H.; Schausten, B.; Shaughnessy, D. A.; Thörle-Pospiech, P.; Trautmann, N.; Uusitalo, J. Spectroscopy along flerovium decay chains. II. Fine structure in odd-A 289Fl. Physical Review C. 6 February 2023, 107 (2): L021301. Bibcode:2023PhRvC.107b1301C. doi:10.1103/PhysRevC.107.L021301 . 
  59. ^ Gutsev, Gennady L.; Khanna, S.; Rao, B.; Jena, P. FeO4: A unique example of a closed-shell cluster mimicking a superhalogen. Physical Review A. 1999, 59 (5): 3681. Bibcode:1999PhRvA..59.3681G. doi:10.1103/PhysRevA.59.3681. 
  60. ^ Darleane C. Hoffman, Diana M. Lee, and Valeria Pershina Transactinide Elements and Future Elements頁面存檔備份,存於網際網路檔案館), Ch. 14 in Lester R. Morss, Norman M. Edelstein, Jean Fuger (Eds.) The Chemistry of the Actinide and Transactinide Elements, Springer-Verlag, Dordrecht 2006, ISBN 978-1-4020-3555-5 p. 1691.
  61. ^ Investigation of Hassium (PDF). [2012-06-02]. (原始內容存檔 (PDF)於2009-02-25). 
  62. ^ Chemistry of Hassium (PDF). Gesellschaft für Schwerionenforschung mbH. 2002 [2007-01-31]. (原始內容存檔 (PDF)於2012-01-14). 
  63. ^ CALLISTO result (PDF). [2012-06-02]. (原始內容存檔 (PDF)於2008-05-28). 

參考書目

外部連結