圖博弈論

博弈論中,描述博弈論的常用方法有正則形式的博弈擴展形式的博弈圖博弈論是參與者之間簡潔博弈的表示形式。

考慮一個博弈,有個參與者,每個人有種策略。我們將任何一個參與者表示為一個圖中的節點,在這個圖中,每個參與者都有一個效用函數,這個效用函數僅僅與其鄰居有關。該效用函數依賴的其他參與者越少,圖示也就越小。

形式定義

博弈由 表示,其中每個參與者由圖中的一個節點表示,若且唯若圖中的兩個節點  的效用函數相互依賴時,則它們之間有一條邊。 中的每個節點 有一個函數 ,其中 是頂點 數。 是參與者 之策略以及其鄰居之策略的效用函數。

博弈規模的表示

對於一個有 個參與者的博弈,每個參與者有 種可能的策略,博弈的規模就是 。該博弈的圖規模為 ,其中 為圖中最大節點度。如果 ,則圖博弈規模遠小於一般博弈的規模。

實例

當每個參與者的效用函數隻依賴於另一個參與者時:

圖的最大度為1,因此博弈可以用 個大小為 的圖表示,所以總大小是 .

納殊均衡

找到納殊均衡所需時間與圖的大小呈指數相關。如果圖博弈的圖是,只需多項式時間就能找到納殊均衡。如果最大的節點度數大於3,這個問題就是NP完全問題。

延伸閱讀