補體系統
補體系統[註 1](英語:complement system)由一系列的蛋白質組成,主要是由肝臟製造後以未活化的狀態分泌至血液中[1],屬於先天免疫系統的一部分[2]。補體存在血清、組織液、和細胞膜表面,經活化後具有酶的活性,可發生複雜的串級反應。補體系統透過一連串的酵素(酶)相互切割啟動,最終在目標微生物上形成類似孔洞的膜攻擊複合物(Membrane attack complex,MAC),使微生物破裂而死亡。補體成分能被抗原抗體複合物或者抗體活化,通過溶胞、調理、吞噬以及介導炎症反應來清除免疫複合物,表現出相應的生物學功能。[3]:68
補體系統的出現遠遠早於特異性免疫的出現(早了600-700萬年),最早出現在後口無脊椎動物中[4]。朱爾·博爾代在1890年發現了補體系統[3]:68。
高等哺乳動物的補體系統有三條活化途徑:經典途徑、替代途徑以及凝集素途徑。在生物的進化過程中,替代途徑應是最早出現的;其次應該是凝集素途徑,而經典途徑應該出現得最晚[5][3]:82。
補體蛋白的命名
補體系統的蛋白質稱為「補體成分」,以縮寫符號C1至C9表示。C1是3種不同的蛋白(C1q,C1r,C1s)的鈣依賴性複合物。補體裂解產生的片段,用小寫的字母後綴表示(C3a)。未活化的片段以後綴「i」表示,如C3bi。活化的具有生物活性的補體成分或複合物,則在符號上加一橫線,如C1,C4b,Ca。
活化路徑
古典途徑
古典途徑(classical pathway)透過C1與古典途徑活化因子(主要是含有IgM、IgG1、IgG2或IgG3的抗原-抗體複合物)的結合而活化的;C1q與單個IgM分子或相鄰兩個IgG分子結合。二分子的IgG「二聯體」與紅細胞表面同種抗原決定簇結合,並與C1q反應活化C1,繼而活化C1r和C1s,經典補體活化途徑的反應順序是:C1,4,2,3,5,6,7,8,9。這一生化途徑使細胞膜形成一10nm左右的「孔」,導致目標細胞因為滲透壓無法維持而腫脹破裂。
凝集素途徑
凝集素途徑的全名為甘露糖結合凝集素途徑(mannose-binding lectin pathway)。甘露糖結合凝集素是先天免疫系統的一種血漿蛋白,可辨認出病原體表面的甘露糖殘基和果糖殘基(mannose residues),與病原體表面結合。甘露糖結合凝集素在補體活化過程中扮演的角色類似經典途徑的C1q蛋白質,另與MASP-1和MASP-2兩種酵素蛋白(類似C1r和C1s)組成活化補體的複合物,繼續進行類似經典途徑的反應。
替代途徑
替代途徑(alternative pathway)的起始依賴C3自然水解成C3a、C3b,C3b並與B、D、P因子結合走入類似經典途徑的的步驟。
自C3b產生以後,三條途徑的反應非常類似。經典途徑和凝集素途徑的可觸發一系列的轉換酵素,涉及C1,C4,C2和C3;而替代途徑的活化則可觸發C3和B、D、P因子的互相作用。
以上三種途徑都將產生C3b,佈於病原體表面的C3b和巨噬細胞上的補體受器(complement receptors, CRs)結合,再加上C5a在旁活化,巨噬細胞就會吞噬病原體,此過程就是所謂的「調理作用」。另外,三種途徑也都會把C5裂解成C5a、C5b兩部份,C5b則與C6、C7、C8、C9形成所謂膜攻擊複合物(membrane-attack complex),在目標細胞的細胞膜上產生孔洞。
補體活化過程中還形成許多具有生物活性的補體蛋白片段,起過敏毒素(產生過敏的不良反應)或趨化因子(誘導抗體、巨噬細胞到達感染位置)的作用。
補體系統的活化通常只發生在病原體的表面,但人體內仍有一群補體調節因子可以中止活化的連鎖反應。防止一旦補體蛋白結合到人體細胞的表面會造成的傷害。較新的發現指出,補體活化亦可發生在細胞內。[6][7][8]
三種途徑比較
古典途徑與凝集素途徑或替代途徑不同。古典途徑需要等到抗體專一地辨認出病原體之後才開始作用,需要後天免疫系統的配合;而凝集素途徑只需自行辨認出某種病原體表面常見的糖類結構即可進行;替代途徑甚至不需依賴辨認病原體,僅靠C3蛋白的自然水解即可起始。
主要功能
- 調理作用(Opsonization):增強抗體的吞噬作用(與IgG的固定區結合)
- 趨化(Chemotaxis):吸引巨噬細胞和中性粒細胞
- 溶解作用(細胞裂解):使外來細胞的細胞膜破裂,分為專一(古典路徑)與非專一(替代路徑)。
- 凝集(Lectin):凝結病原體
- 引起發炎反應,使中性白血球聚集到發炎部位。
- 清除免疫複合物
[9]。
註釋
- ^ 在無指明情況下,本文中的「補體系統」指人體的補體系統
參考文獻
- ^ 補體系統(Complement System) -上. 科學Online. 2010-11-01 [2024-02-08]. (原始內容存檔於2023-07-24) (中文(臺灣)).
- ^ Janeway, CA Jr; Travers P; Walport M; et al. The complement system and innate immunity. Immunobiology: The Immune System in Health and Disease. New York: Garland Science. 2001 [25 February 2013]. (原始內容存檔於2022-03-11).
- ^ 3.0 3.1 3.2 復旦大學生命科學院. 《免疫學導論》(Introduction to Immunology). 高等教育出版社、斯普林格出版社. 1999. ISBN 9-787040-069549 (中文(簡體)).
- ^ 王長法; 張士璀; 王勇軍. 补体系统的进化. 海洋科學. 2004, (08): 55–58 [2022-04-17]. ISSN 1000-3096. doi:10.3969/j.issn.1000-3096.2004.08.012. (原始內容存檔於2022-04-17).
- ^ 5.0 5.1 Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 6th. Elsevier. 2010. ISBN 978-1-4160-3123-9.
- ^ Liszewski, M. Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G.; Fara, Antonella F.; Subias, Marta; Pickering, Matthew C.; Drouet, Christian; Meri, Seppo; Arstila, T. Petteri; Pekkarinen, Pirkka T.; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P.; Kemper, Claudia. Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation. Immunity. 2013-12, 39 (6): 1143–1157. doi:10.1016/j.immuni.2013.10.018.
- ^ Paul's fundamental immunology 8th. Philadelphia: Wolters Kluwer/Lippincott Williams & Wikins. : 417. ISBN 9781975142537.
- ^ West, Erin E.; Kemper, Claudia. Complosome — the intracellular complement system. Nature Reviews Nephrology. 2023-07, 19 (7). ISSN 1759-5061. PMC 10100629 . PMID 37055581. doi:10.1038/s41581-023-00704-1 (英語).
- ^ 免疫學-補體系統.
- 《英中醫學辭海》
- 《醫學免疫學》網頁版
- Janeway & Travers《免疫生物學》第6版