鈉離子電池

鈉離子電池(英語:Sodium-ion battery),是一種以離子電荷載體的充電電池,其工作原理及結構與鋰離子電池相似,差別只在以在元素週期表同組、化學特性相近的鈉取代鋰。

鈉離子電池
比能75–200 Wh/kg
能量密度250–375 W·h/L
時間耐久性> 10 年
循環耐久性2,000 充電周期
標稱電池電壓3.0–3.1 V

由於製造鋰離子電池所需的物料在資源分佈、價格及開採導致的環境破壞等問題,鈉離子電池在2010年至2020年代被關注。鋰離子電池需要到的,在鈉離子電池並不是必然需要。

鈉離子電池的最大好處就是用作生產所需的資源蘊藏量豐富,但仍須要解決能量密度較低,充電週期較少的問題後才可實用化。

歷史

鈉離子電池的研發在1970年代至1980年代間開始。但在1990年代,鋰離子電池顯得較有可能實用化,因而鈉離子電池的研究就慢了下來。

自2010年代早期,因為製造鋰離子電池的成本上升,對鈉離子電池的研究的投入開始增加。

2021年,寧德時代宣佈將會在年內投產自身研發的第一代鈉離子電池,提供在有需要的使用場景中使用[1]。能量密度160 Wh/kg,並預計可提高至 200 Wh/kg。預計到 2025 年,鈉離子電池容量將增至 10 GWh[2]

原理

鈉離子電池的負極由含有鈉的物料造成,作為正極的物料則不一定需要含有鈉,電解質是含有鈉的極性質子溶劑極性非質子溶劑。當充電時,鈉離子由負極移動到正極,而電子則流經外部電路。當放電時則以相反過程進行。

優勢與劣勢

由於鈉離子比鋰離子更大,所以相對於鋰離子電池,能量密度較低,[3][4]因為鈉離子電池使用的電極材料主要是鈉鹽,相較於鹽而言儲量更豐富,價格更低廉。[5]此外,充電週期較少。但生產成本低,而且較安全。

比較
鈉離子電池 鋰離子電池 鉛酸電池
成本(美元,US$) / (千瓦·時,kWh ) 40–77 (理論價-2019年)[6] 137 (平均價-2020年).[7] 100–300[8]
容積能量密度 (瓦·時/升,W·h/L) 250–375 , 原型數據[9] 200–683 [10] 80–90 [11]
比能 (瓦·時/公斤,W·h/kg) 75–200, 原型數據及產品公報[9][12][13] 120–260[10] 35–40[11]
充電週期(放電深度80%)[a] 數百至數千次[14] 3,500[8] 900[8]
安全性 水性電池—低危險性,

鈉碳電池—高危險性

高危險性[b] 危險性一般
物料 蘊藏量豐富 蘊藏量稀少 有毒
週期穩定性 高 (自放電英語Self-discharge低得可以忽略) 高 (自放電低得可以忽略) 一般 (高自放電)
儲能效率 高至92%[14] 85–95%[15] 70–90%[16]
運作溫度範圍[c] −20 °C 至 60 °C[14] 最大範圍:−20 °C 至 60 °C.

最佳範圍:15 °C 至 35 °C[17]

−20 °C 至 60 °C[18]

註釋

  1. ^ The number of charge-discharge cycles a battery supports depends on multiple considerations, including depth of discharge, rate of discharge, rate of charge, and temperature. The values shown here reflect generally favorable conditions.
  2. ^ See Lithium-ion battery safety.
  3. ^ Temperature affects charging behavior, capacity, and battery lifetime, and affects each of these differently, at different temperature ranges for each. The values given here are general ranges for battery operation.

參考資料

  1. ^ 存档副本. [2021-06-16]. (原始內容存檔於2021-06-27). 
  2. ^ Sodium-ion battery fleet to grow to 10 GWh by 2025. [2023-07-23]. (原始內容存檔於2023-07-23). 
  3. ^ Palomares, Veronica; et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. In. Energy and Environmental Science. 2012, 5 (3): 5884–5901. doi:10.1039/c2ee02781j. 
  4. ^ Pan, Huilin; et al. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy and Environmental Science. 2013, 6 (8): 2338–2360. doi:10.1039/c3ee40847g. 
  5. ^ 存档副本. [2021-06-16]. (原始內容存檔於2021-12-02). 
  6. ^ 引用錯誤:沒有為名為:5的參考文獻提供內容
  7. ^ Battery Pack Prices Cited Below $100/kWh for the First Time in 2020, While Market Average Sits at $137/kWh. Bloomberg NEF. 16 December 2020 [15 March 2021]. (原始內容存檔於2020-12-16). 
  8. ^ 8.0 8.1 8.2 Mongird K, Fotedar V, Viswanathan V, Koritarov V, Balducci P, Hadjerioua B, Alam J. Energy Storage Technology and Cost Characterization Report (PDF) (pdf). U.S. Department Of Energy: iix. July 2019 [15 March 2021]. (原始內容存檔 (PDF)於2023-09-17). 
  9. ^ 9.0 9.1 Abraham, K. M. How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?. ACS Energy Letters (pdf) (American Chemical Society). 23 October 2020, 5 (11): 3546. doi:10.1021/acsenergylett.0c02181 . 
  10. ^ 10.0 10.1 Automotive Li-Ion Batteries: Current Status and Future Perspectives (報告). U.S. Department Of Energy: 26. 2019-01-01 [15 March 2021]. 
  11. ^ 11.0 11.1 May, Geoffrey J.; Davidson, Alistair; Monahov, Boris. Lead batteries for utility energy storage: A review. Journal of Energy Storage. 2018-02-01, 15: 145–157. ISSN 2352-152X. doi:10.1016/j.est.2017.11.008  (英語). 
  12. ^ CATL Unveils Its Latest Breakthrough Technology by Releasing Its First Generation of Sodium-ion Batteries. www.catl.com. [2023-04-24]. (原始內容存檔於2023-10-10). 
  13. ^ CATL to begin mass production of sodium-ion batteries next year. 29 October 2022 [2023-07-23]. (原始內容存檔於2023-04-26). 
  14. ^ 14.0 14.1 14.2 Performance. Faradion Limited. [17 March 2021]. (原始內容存檔於2018-05-06). The (round trip) energy efficiency of sodium-ion batteries is 92% at a discharge time of 5 hours. 
  15. ^ Lithium Ion Battery Test - Public Report 5 (PDF) (pdf). ITP Renewables: 13. September 2018 [17 March 2021]. (原始內容存檔 (PDF)於2023-05-17). The data shows all technologies delivering between 85–95% DC round-trip efficiency. 
  16. ^ "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems" (pdf). mdpi.com: 13. November 2017 [17 March 2021]. (原始內容存檔於2018-07-23). Lead–acid batteries have a ... round trip-efficiency (RTE) of ~70–90% 
  17. ^ Ma, Shuai. "Temperature effect and thermal impact in lithium-ion batteries: A review". Progress in Natural Science: Materials International (pdf). December 2018, 28 (6): 653–666. S2CID 115675281. doi:10.1016/j.pnsc.2018.11.002 . 
  18. ^ Hutchinson, Ronda. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life (PDF) (pdf). Sandia National Labs: SAND2004–3149, 975252. June 2004 [17 March 2021]. S2CID 111233540. doi:10.2172/975252. (原始內容存檔 (PDF)於2023-03-27). 

參見