用戶:Woclass/Homotopy
同倫(英語:homotopic,源自希臘語:ὁμός homós,意為「相同,相似的」與希臘語:τόπος tópos,意為「方位」)。在數學中,同倫的概念在拓撲上描述了兩個對象間的「連續變化」。 在拓撲學中,兩個定義在拓撲空間之間的連續函數,如果其中一個能「連續地形變」為另一個,則這兩個函數稱為同倫的。這樣的形變稱為兩個函數之間的同倫。同倫的一個重要的應用是同倫群和餘倫群的定義,它們是代數拓撲中重要的不變量。
事實上,在特定的空間中應用同倫還有一些技術上的困難。代數拓撲學家一般使用緊生成空間、CW複形或譜。
函數的同倫
給定兩個拓撲空間 和 。考慮兩個連續函數 ,若存在一個定義在空間 X 與單位區間 [0,1] 的積空間上的連續映射 使得:
則稱 是 之間的一個同倫[1]:183。
如果我們將 H 的第二個參數當作時間,這樣 H 相當於描述了一個從 f 到 g 的連續形變:0 時刻我們得到函數f,1 時刻我們得到函數 g。 我們也可以將第二個參數視作一個可以滑動的「控制條」,當控制條從0滑動至1時,函數 f 平滑地轉變為函數 g,反之亦然。
另一種觀點是:對每個 ,函數 定義一條連接 與 的路徑:
右側的循環動畫展示了兩個嵌入R3中的環面之間的同倫。X 是環面,Y 是 R3。f,g 是從環面到 R3的連續函數,當動畫開始時,f 把環面映射為嵌入的甜甜圈的表面。g 把環面映射為嵌入的咖啡杯表面。動畫展示了ht(x)作為時間的函數時的圖像。每一次循環中,時間 t 從 0 變成 1,暫停一會,又從 1 變成 0。
性質
當且僅當存在同倫 H 將 f 轉換為 g時,稱連續函數 f 和 g 是同倫的。同倫是 X 到 Y 上所有的連續函數之間的一種等價關係[1]:184。以下情形中,同倫關係滿足函數的複合:
如果 f1, g1 : X → Y 是同倫的,並且 f2, g2 : Y → Z 是同倫的,則他們的複合 f2 ∘ f1 與 g2 ∘ g1 : X → Z 也是同倫的。
例子
例一:取 , , 及 。則 與 透過下述函數在 中同倫。
- (注意到此例子不依賴於變量 ,通常並非如此。)
- 註:「在 中同倫」的說法提示一個重點:在例一中若將 代為子空間 ,則雖然 與 仍取值在 ,但此時它們並不同倫。此點可藉中間值定理驗證。
例二:取 , , 及 。則 描繪一個以原點為圓心的單位圓; 停在原點。 與 透過下述連續函數同倫:
- 幾何上來看,對每個值 ,函數 描繪一個以原點為圓心,半徑 的圓。
同倫等價
給定兩個拓撲空間 與 ,我們稱之同倫等價(或稱具相同倫型),當且僅當存在兩個連續映射 與 ,使得:
在這種情形下我們稱映射 f 和 g 是同倫等價的。
同胚蘊含同倫等價,反之則不然,詳見以下例子:
- 實心碟盤和一個點並不同胚,因為它們之間不存在一個對射。但它們是同倫等價的,因為你可以將碟片沿半徑方向連續地變化為一個點。與一個點同倫等價的空間稱為可縮空間
- 另一個例子:莫比烏斯帶和無扭環帶是拓撲等價的,因為你可以將二者連續地轉換為一個圓。但它們不是同胚的[1]:85。
一般來說,如果兩個空間可以通過彎曲、收縮或擴展操作互相轉換,那麼它們是同倫等價的。
例子
- 一個平面上的圓或橢圓同倫等價到 ,即去掉一點的平面。
- 線段 、閉圓盤及閉球間兩兩同倫等價,它們皆同倫等價於一個點。
不變性
同倫等價是個拓撲空間之間的等價關係。在代數拓撲學中同倫等價十分重要,因為其中的許多概念都是同倫不變的,包括:單連通、同調群及餘調群等。也就是說,它們滿足同倫等價的關係。舉例來說,如果 X 和 Y 是同倫等價的空間,則有:
- 如果 X 是路徑連通的,那麼 Y 也是。
- 如果 X 是單連通的,那麼 Y 也是。
- X 和 Y 的(奇異)同調和餘調群是同構的。
- 如果 X 和 Y 都是路徑連通的,那麼 X 和 Y 的基本群是同構。並且他們的高階同倫群也是如此。(如果去掉路徑連通假設,x0 ∈ X.) 且 f : X → Y 是同倫等價時,π1(X,x0) 同倫於 π1(Y,f(x0)))。
拓撲空間的代數不變量中,不屬於同倫不變量的一個例子是:緊支撐同調。粗略地說:緊支撐同調是緊化的同倫,而緊化不是同倫不變的。
變體
相對同倫
為定義高階基本群,必須考慮相對於一個子空間的同倫概念。這是指能在不變動該子空間的狀況下連續變化,正式定義是:設 是連續函數,固定子空間 ;若存在前述同倫映射 ,滿足:
則稱 相對於 同倫。若取 ,則回到原先的同倫定義。
同痕
同痕是同倫的加細版;我們進一步要求所論的函數 和 是嵌入,並要求兩者間可用一族嵌入映射相連。
定義如次: 與 被稱為同痕的,當且僅當存在連續映射 使之滿足:
- 對所有 ,映射 是個嵌入映射。
同痕的概念在紐結理論中格外重要:若兩個結同痕,則我們視之相等;換言之,可以在不使結扯斷或相交的條件下彼此連續地變形。
性質
應用
醫學上,運用度理論分析刺激搏動的心臟的模型,研究模型的拓撲性質,對纖維性擅動的原因提供了可能的解釋。[2][1]:190
數學上,庫恩多項式求根[3]
在代數和微分方程領域,基於同倫的概念提出了新的計算方法。代數方程領域的方法有:同倫延拓法[4]和延拓法(見數值延拓)。微分方程領域的方法有同倫分析方法。
參見
參考文獻
- ^ 1.0 1.1 1.2 1.3 Colin, Adams; Robert, Franzosa; 沈以淡. 第9章 同伦与度理论. 拓扑学基础及应用. 北京: 機械工業出版社. 2010年4月1日. ISBN 9787111288091. OCLC 644064114.
- ^ Winfree, Arthur T. Sudden Cardiac Death: A Problem in Topology. Scientific American. 1983-05, 248 (5): 144–161. ISSN 0036-8733. doi:10.1038/scientificamerican0583-144.
- ^ Kuhn, Harold W. Finding Roots of Polynomials By Pivoting. Fixed Points. Elsevier. 1977: 11–39. ISBN 9780123980502. doi:10.1016/b978-0-12-398050-2.50007-4.
- ^ Allgower, Eugene. Introduction to Numerical Continuation Methods (PDF). CSU. [3 January 2013].[永久失效連結]
[[Category:拓撲學|T]] [[Category:连续映射|T]] [[Category:同伦论|*]]