方法
克蘭克-尼科爾森方法在空間域上的使用中心差分;而時間域上應用梯形公式,保證了時間域上的二階收斂。例如,一維偏微分方程
∂
u
∂
t
=
F
(
u
,
x
,
t
,
∂
u
∂
x
,
∂
2
u
∂
x
2
)
{\displaystyle {\frac {\partial u}{\partial t}}=F\left(u,x,t,{\frac {\partial u}{\partial x}},{\frac {\partial ^{2}u}{\partial x^{2}}}\right)}
令
u
(
i
Δ
x
,
n
Δ
t
)
=
u
i
n
{\displaystyle u(i\Delta x,n\Delta t)=u_{i}^{n}\,}
,則通過克蘭克-尼科爾森方法導出的差分方程是第n 步上採用前向歐拉方法與第n+1 步上採用後向歐拉方法的平均值(注意,克蘭克-尼科爾森方法本身不是這兩種方法簡單地取平均,方程對解隱式依賴)。
u
i
n
+
1
−
u
i
n
Δ
t
=
F
i
n
(
u
,
x
,
t
,
∂
u
∂
x
,
∂
2
u
∂
x
2
)
{\displaystyle {\frac {u_{i}^{n+1}-u_{i}^{n}}{\Delta t}}=F_{i}^{n}\left(u,x,t,{\frac {\partial u}{\partial x}},{\frac {\partial ^{2}u}{\partial x^{2}}}\right)}
(前向歐拉方法)
u
i
n
+
1
−
u
i
n
Δ
t
=
F
i
n
+
1
(
u
,
x
,
t
,
∂
u
∂
x
,
∂
2
u
∂
x
2
)
{\displaystyle {\frac {u_{i}^{n+1}-u_{i}^{n}}{\Delta t}}=F_{i}^{n+1}\left(u,x,t,{\frac {\partial u}{\partial x}},{\frac {\partial ^{2}u}{\partial x^{2}}}\right)}
(後向歐拉方法)
u
i
n
+
1
−
u
i
n
Δ
t
=
1
2
(
F
i
n
+
1
(
u
,
x
,
t
,
∂
u
∂
x
,
∂
2
u
∂
x
2
)
+
F
i
n
(
u
,
x
,
t
,
∂
u
∂
x
,
∂
2
u
∂
x
2
)
)
{\displaystyle {\frac {u_{i}^{n+1}-u_{i}^{n}}{\Delta t}}={\frac {1}{2}}\left(F_{i}^{n+1}\left(u,x,t,{\frac {\partial u}{\partial x}},{\frac {\partial ^{2}u}{\partial x^{2}}}\right)+F_{i}^{n}\left(u,x,t,{\frac {\partial u}{\partial x}},{\frac {\partial ^{2}u}{\partial x^{2}}}\right)\right)}
(克蘭克-尼科爾森方法)
對於F ,通過中心差分方法使其在空間上是離散的。
注意,這是一個隱式方法,需要求解代數方程組以得到時間域上的下一個u 值。如果偏微分方程是非線性的,中心差分後得到的方程依舊是非線性方程系統,因此在時間步上推進會涉及求解非線性代數方程組。許多問題中,特別是線性擴散,代數方程中的矩陣是三對角的,通過三對角矩陣算法 可以高效求解,這樣,算法的時間複雜度由直接求解全矩陣的
O
(
n
3
)
{\displaystyle {\mathcal {O}}(n^{3})}
轉化為
O
(
n
)
{\displaystyle {\mathcal {O}}(n)}
。
示例
線性擴散問題
∂
u
∂
t
=
a
∂
2
u
∂
x
2
{\displaystyle {\frac {\partial u}{\partial t}}=a{\frac {\partial ^{2}u}{\partial x^{2}}}}
通過克蘭克-尼科爾森方法將得到離散方程
u
i
n
+
1
−
u
i
n
Δ
t
=
a
2
(
Δ
x
)
2
(
(
u
i
+
1
n
+
1
−
2
u
i
n
+
1
+
u
i
−
1
n
+
1
)
+
(
u
i
+
1
n
−
2
u
i
n
+
u
i
−
1
n
)
)
{\displaystyle {\frac {u_{i}^{n+1}-u_{i}^{n}}{\Delta t}}={\frac {a}{2(\Delta x)^{2}}}\left((u_{i+1}^{n+1}-2u_{i}^{n+1}+u_{i-1}^{n+1})+(u_{i+1}^{n}-2u_{i}^{n}+u_{i-1}^{n})\right)}
引入變量
r
=
a
Δ
t
2
(
Δ
x
)
2
{\displaystyle r={\frac {a\Delta t}{2(\Delta x)^{2}}}}
:
−
r
u
i
+
1
n
+
1
+
(
1
+
2
r
)
u
i
n
+
1
−
r
u
i
−
1
n
+
1
=
r
u
i
+
1
n
+
(
1
−
2
r
)
u
i
n
+
r
u
i
−
1
n
{\displaystyle -ru_{i+1}^{n+1}+(1+2r)u_{i}^{n+1}-ru_{i-1}^{n+1}=ru_{i+1}^{n}+(1-2r)u_{i}^{n}+ru_{i-1}^{n}\,}
這是一個三對角問題,應用三對角矩陣算法(追趕法)即可得到
u
i
n
+
1
{\displaystyle u_{i}^{n+1}}
,而不需要對矩陣直接求逆。
∂
u
∂
t
=
a
(
u
)
∂
2
u
∂
x
2
{\displaystyle {\frac {\partial u}{\partial t}}=a(u){\frac {\partial ^{2}u}{\partial x^{2}}}}
離散化後則會得到非線性方程系統。但是某些情況下,通過使用a 的舊值,即用
a
i
n
(
u
)
{\displaystyle a_{i}^{n}(u)\,}
替代
a
i
n
+
1
(
u
)
{\displaystyle a_{i}^{n+1}(u)\,}
,可將問題線性化。其他時候,也可能在保證穩定性的基礎上使用顯式方法估計
a
i
n
+
1
(
u
)
{\displaystyle a_{i}^{n+1}(u)\,}
一維多通道連接的擴散問題
這種模型可以用於描述水流中含穩定污染流,但只有一維信息的情況。它可以簡化為一維問題並得到有價值的信息。
可對水中污染溶質富集的問題進行建模,這種問題由三部分組成:已知的擴散方程(
D
x
{\displaystyle D_{x}}
為常量),平流分量(即由速度場導致的系統在空間上的變化,表示為常量Ux ),以及與縱向通道k旁流的相互作用。
⟨
0
⟩
∂
C
∂
t
=
D
x
∂
2
C
∂
x
2
−
U
x
∂
C
∂
x
−
k
(
C
−
C
N
)
−
k
(
C
−
C
M
)
{\displaystyle \langle 0\rangle {\frac {\partial C}{\partial t}}=D_{x}{\frac {\partial ^{2}C}{\partial x^{2}}}-U_{x}{\frac {\partial C}{\partial x}}-k(C-C_{N})-k(C-C_{M})}
其中C 表示污染物的富集水平,下標N 和M 分別對應上一通道和下一通道。
克蘭克-尼科爾森方法(i對應位置,j對應時間)將以上偏微分方程中的每個部分變換為
⟨
1
⟩
∂
C
∂
t
=
C
i
j
+
1
−
C
i
j
Δ
t
{\displaystyle \langle 1\rangle {\frac {\partial C}{\partial t}}={\frac {C_{i}^{j+1}-C_{i}^{j}}{\Delta t}}}
⟨
2
⟩
∂
2
C
∂
x
2
=
1
2
(
Δ
x
)
2
(
(
C
i
+
1
j
+
1
−
2
C
i
j
+
1
+
C
i
−
1
j
+
1
)
+
(
C
i
+
1
j
−
2
C
i
j
+
C
i
−
1
j
)
)
{\displaystyle \langle 2\rangle {\frac {\partial ^{2}C}{\partial x^{2}}}={\frac {1}{2(\Delta x)^{2}}}\left((C_{i+1}^{j+1}-2C_{i}^{j+1}+C_{i-1}^{j+1})+(C_{i+1}^{j}-2C_{i}^{j}+C_{i-1}^{j})\right)}
⟨
3
⟩
∂
C
∂
x
=
1
2
(
(
C
i
+
1
j
+
1
−
C
i
−
1
j
+
1
)
2
(
Δ
x
)
+
(
C
i
+
1
j
−
C
i
−
1
j
)
2
(
Δ
x
)
)
{\displaystyle \langle 3\rangle {\frac {\partial C}{\partial x}}={\frac {1}{2}}\left({\frac {(C_{i+1}^{j+1}-C_{i-1}^{j+1})}{2(\Delta x)}}+{\frac {(C_{i+1}^{j}-C_{i-1}^{j})}{2(\Delta x)}}\right)}
⟨
4
⟩
C
=
1
2
(
C
i
j
+
1
+
C
i
j
)
{\displaystyle \langle 4\rangle C={\frac {1}{2}}(C_{i}^{j+1}+C_{i}^{j})}
⟨
5
⟩
C
N
=
1
2
(
C
N
i
j
+
1
+
C
N
i
j
)
{\displaystyle \langle 5\rangle C_{N}={\frac {1}{2}}(C_{Ni}^{j+1}+C_{Ni}^{j})}
⟨
6
⟩
C
M
=
1
2
(
C
M
i
j
+
1
+
C
M
i
j
)
{\displaystyle \langle 6\rangle C_{M}={\frac {1}{2}}(C_{Mi}^{j+1}+C_{Mi}^{j})}
現在引入以下常量用於簡化計算:
λ
=
D
x
Δ
t
2
Δ
x
2
{\displaystyle \lambda ={\frac {D_{x}\Delta t}{2\Delta x^{2}}}}
α
=
U
x
Δ
t
4
Δ
x
{\displaystyle \alpha ={\frac {U_{x}\Delta t}{4\Delta x}}}
β
=
k
Δ
t
2
{\displaystyle \beta ={\frac {k\Delta t}{2}}}
把 <1>, <2>, <3>, <4>, <5>, <6>, α , β 和 λ 代入 <0>. 把新時間項(j +1)代入到左邊,當前時間項(j )代入到右邊,將得到
−
β
C
N
i
j
+
1
−
(
λ
+
α
)
C
i
−
1
j
+
1
+
(
1
+
2
λ
+
2
β
)
C
i
j
+
1
−
(
λ
−
α
)
C
i
+
1
j
+
1
−
β
C
M
i
j
+
1
=
β
C
N
i
j
+
(
λ
+
α
)
C
i
−
1
j
+
(
1
−
2
λ
−
2
β
)
C
i
j
+
(
λ
−
α
)
C
i
+
1
j
+
β
C
M
i
j
{\displaystyle -\beta C_{Ni}^{j+1}-(\lambda +\alpha )C_{i-1}^{j+1}+(1+2\lambda +2\beta )C_{i}^{j+1}-(\lambda -\alpha )C_{i+1}^{j+1}-\beta C_{Mi}^{j+1}=\beta C_{Ni}^{j}+(\lambda +\alpha )C_{i-1}^{j}+(1-2\lambda -2\beta )C_{i}^{j}+(\lambda -\alpha )C_{i+1}^{j}+\beta C_{Mi}^{j}}
第一個通道只能與下一個通道(M )有關係,因此表達式可以簡化為:
−
(
λ
+
α
)
C
i
−
1
j
+
1
+
(
1
+
2
λ
+
β
)
C
i
j
+
1
−
(
λ
−
α
)
C
i
+
1
j
+
1
−
β
C
M
i
j
+
1
=
+
(
λ
+
α
)
C
i
−
1
j
+
(
1
−
2
λ
−
β
)
C
i
j
+
(
λ
−
α
)
C
i
+
1
j
+
β
C
M
i
j
{\displaystyle -(\lambda +\alpha )C_{i-1}^{j+1}+(1+2\lambda +\beta )C_{i}^{j+1}-(\lambda -\alpha )C_{i+1}^{j+1}-\beta C_{Mi}^{j+1}=+(\lambda +\alpha )C_{i-1}^{j}+(1-2\lambda -\beta )C_{i}^{j}+(\lambda -\alpha )C_{i+1}^{j}+\beta C_{Mi}^{j}}
同樣地, 最後一個通道只與前一個通道(N )有關聯,因此表達式可以簡化為
−
β
C
N
i
j
+
1
−
(
λ
+
α
)
C
i
−
1
j
+
1
+
(
1
+
2
λ
+
β
)
C
i
j
+
1
−
(
λ
−
α
)
C
i
+
1
j
+
1
=
β
C
N
i
j
+
(
λ
+
α
)
C
i
−
1
j
+
(
1
−
2
λ
−
β
)
C
i
j
+
(
λ
−
α
)
C
i
+
1
j
{\displaystyle -\beta C_{Ni}^{j+1}-(\lambda +\alpha )C_{i-1}^{j+1}+(1+2\lambda +\beta )C_{i}^{j+1}-(\lambda -\alpha )C_{i+1}^{j+1}=\beta C_{Ni}^{j}+(\lambda +\alpha )C_{i-1}^{j}+(1-2\lambda -\beta )C_{i}^{j}+(\lambda -\alpha )C_{i+1}^{j}}
為求解此線性方程組,需要知道邊界條件在通道始端就已經給定了。
C
0
j
{\displaystyle C_{0}^{j}}
: 當前時間步某通道的初始條件
C
0
j
+
1
{\displaystyle C_{0}^{j+1}}
: 下一時間步某通道的初始條件
C
N
0
j
{\displaystyle C_{N0}^{j}}
: 前一通道到當前時間步下某通道的初始條件
C
M
0
j
{\displaystyle C_{M0}^{j}}
: 下一通道到當前時間步下某通道的初始條件
對於通道的末端最後一個節點,最方便的條件是是絕熱近似,則
∂
C
∂
x
x
=
z
=
(
C
i
+
1
−
C
i
−
1
)
2
Δ
x
=
0
{\displaystyle {\frac {\partial C}{\partial x}}_{x=z}={\frac {(C_{i+1}-C_{i-1})}{2\Delta x}}=0}
當且只當
C
i
+
1
j
+
1
=
C
i
−
1
j
+
1
{\displaystyle C_{i+1}^{j+1}=C_{i-1}^{j+1}\,}
時,這一條件才被滿足。
以3個通道,5個節點為例,可以將線性系統問題表示為
[
A
A
]
[
C
j
+
1
]
=
[
B
B
]
[
C
j
]
+
[
d
]
{\displaystyle {\begin{bmatrix}AA\end{bmatrix}}{\begin{bmatrix}C^{j+1}\end{bmatrix}}=[BB][C^{j}]+[d]}
其中,
C
j
+
1
=
[
C
11
j
+
1
C
12
j
+
1
C
13
j
+
1
C
14
j
+
1
C
21
j
+
1
C
22
j
+
1
C
23
j
+
1
C
24
j
+
1
C
31
j
+
1
C
32
j
+
1
C
33
j
+
1
C
34
j
+
1
]
{\displaystyle \mathbf {C^{j+1}} ={\begin{bmatrix}C_{11}^{j+1}\\C_{12}^{j+1}\\C_{13}^{j+1}\\C_{14}^{j+1}\\C_{21}^{j+1}\\C_{22}^{j+1}\\C_{23}^{j+1}\\C_{24}^{j+1}\\C_{31}^{j+1}\\C_{32}^{j+1}\\C_{33}^{j+1}\\C_{34}^{j+1}\end{bmatrix}}}
C
j
=
[
C
11
j
C
12
j
C
13
j
C
14
j
C
21
j
C
22
j
C
23
j
C
24
j
C
31
j
C
32
j
C
33
j
C
34
j
]
{\displaystyle \mathbf {C^{j}} ={\begin{bmatrix}C_{11}^{j}\\C_{12}^{j}\\C_{13}^{j}\\C_{14}^{j}\\C_{21}^{j}\\C_{22}^{j}\\C_{23}^{j}\\C_{24}^{j}\\C_{31}^{j}\\C_{32}^{j}\\C_{33}^{j}\\C_{34}^{j}\end{bmatrix}}}
需要清楚的是,AA 和BB 是由四個不同子矩陣組成的矩陣,
A
A
=
[
A
A
1
A
A
3
0
A
A
3
A
A
2
A
A
3
0
A
A
3
A
A
1
]
{\displaystyle \mathbf {AA} ={\begin{bmatrix}AA1&AA3&0\\AA3&AA2&AA3\\0&AA3&AA1\end{bmatrix}}}
B
B
=
[
B
B
1
−
A
A
3
0
−
A
A
3
B
B
2
−
A
A
3
0
−
A
A
3
B
B
1
]
{\displaystyle \mathbf {BB} ={\begin{bmatrix}BB1&-AA3&0\\-AA3&BB2&-AA3\\0&-AA3&BB1\end{bmatrix}}}
其中上述矩陣的的矩陣元對應於下一個矩陣和額外的4x4零矩陣 。請注意,矩陣AA 和BB 的大小為12x12
A
A
1
=
[
(
1
+
2
λ
+
β
)
−
(
λ
−
α
)
0
0
−
(
λ
+
α
)
(
1
+
2
λ
+
β
)
−
(
λ
−
α
)
0
0
−
(
λ
+
α
)
(
1
+
2
λ
+
β
)
−
(
λ
−
α
)
0
0
−
2
λ
(
1
+
2
λ
+
β
)
]
{\displaystyle \mathbf {AA1} ={\begin{bmatrix}(1+2\lambda +\beta )&-(\lambda -\alpha )&0&0\\-(\lambda +\alpha )&(1+2\lambda +\beta )&-(\lambda -\alpha )&0\\0&-(\lambda +\alpha )&(1+2\lambda +\beta )&-(\lambda -\alpha )\\0&0&-2\lambda &(1+2\lambda +\beta )\end{bmatrix}}}
A
A
2
=
[
(
1
+
2
λ
+
2
β
)
−
(
λ
−
α
)
0
0
−
(
λ
+
α
)
(
1
+
2
λ
+
2
β
)
−
(
λ
−
α
)
0
0
−
(
λ
+
α
)
(
1
+
2
λ
+
2
β
)
−
(
λ
−
α
)
0
0
−
2
λ
(
1
+
2
λ
+
2
β
)
]
{\displaystyle \mathbf {AA2} ={\begin{bmatrix}(1+2\lambda +2\beta )&-(\lambda -\alpha )&0&0\\-(\lambda +\alpha )&(1+2\lambda +2\beta )&-(\lambda -\alpha )&0\\0&-(\lambda +\alpha )&(1+2\lambda +2\beta )&-(\lambda -\alpha )\\0&0&-2\lambda &(1+2\lambda +2\beta )\end{bmatrix}}}
A
A
3
=
[
−
β
0
0
0
0
−
β
0
0
0
0
−
β
0
0
0
0
−
β
]
{\displaystyle \mathbf {AA3} ={\begin{bmatrix}-\beta &0&0&0\\0&-\beta &0&0\\0&0&-\beta &0\\0&0&0&-\beta \end{bmatrix}}}
B
B
1
=
[
(
1
−
2
λ
−
β
)
(
λ
−
α
)
0
0
(
λ
+
α
)
(
1
−
2
λ
−
β
)
(
λ
−
α
)
0
0
(
λ
+
α
)
(
1
−
2
λ
−
β
)
(
λ
−
α
)
0
0
2
λ
(
1
−
2
λ
−
β
)
]
{\displaystyle \mathbf {BB1} ={\begin{bmatrix}(1-2\lambda -\beta )&(\lambda -\alpha )&0&0\\(\lambda +\alpha )&(1-2\lambda -\beta )&(\lambda -\alpha )&0\\0&(\lambda +\alpha )&(1-2\lambda -\beta )&(\lambda -\alpha )\\0&0&2\lambda &(1-2\lambda -\beta )\end{bmatrix}}}
&
B
B
2
=
[
(
1
−
2
λ
−
2
β
)
(
λ
−
α
)
0
0
(
λ
+
α
)
(
1
−
2
λ
−
2
β
)
(
λ
−
α
)
0
0
(
λ
+
α
)
(
1
−
2
λ
−
2
β
)
(
λ
−
α
)
0
0
2
λ
(
1
−
2
λ
−
2
β
)
]
{\displaystyle \mathbf {BB2} ={\begin{bmatrix}(1-2\lambda -2\beta )&(\lambda -\alpha )&0&0\\(\lambda +\alpha )&(1-2\lambda -2\beta )&(\lambda -\alpha )&0\\0&(\lambda +\alpha )&(1-2\lambda -2\beta )&(\lambda -\alpha )\\0&0&2\lambda &(1-2\lambda -2\beta )\end{bmatrix}}}
這裏的d 向量用於保證邊界條件成立。在此示例中為12x1的向量。
d
=
[
(
λ
+
α
)
(
C
10
j
+
1
+
C
10
j
)
0
0
0
(
λ
+
α
)
(
C
20
j
+
1
+
C
20
j
)
0
0
0
(
λ
+
α
)
(
C
30
j
+
1
+
C
30
j
)
0
0
0
]
{\displaystyle \mathbf {d} ={\begin{bmatrix}(\lambda +\alpha )(C_{10}^{j+1}+C_{10}^{j})\\0\\0\\0\\(\lambda +\alpha )(C_{20}^{j+1}+C_{20}^{j})\\0\\0\\0\\(\lambda +\alpha )(C_{30}^{j+1}+C_{30}^{j})\\0\\0\\0\end{bmatrix}}}
為了找到任意時間下污染物的聚集情況,需要對以下方程進行迭代計算:
[
C
j
+
1
]
=
[
A
A
−
1
]
(
[
B
B
]
[
C
j
]
+
[
d
]
)
{\displaystyle {\begin{bmatrix}C^{j+1}\end{bmatrix}}={\begin{bmatrix}AA^{-1}\end{bmatrix}}([BB][C^{j}]+[d])}
二維擴散問題
將擴散問題延伸到二維的笛卡爾網格 ,推導方程類似,但結果會是{{link-en|帶形矩陣|Banded matrix||的方程式,不是三角矩陣 ,二維的熱方程
∂
u
∂
t
=
a
(
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
)
{\displaystyle {\frac {\partial u}{\partial t}}=a\left({\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}\right)}
假設網格滿足
Δ
x
=
Δ
y
{\displaystyle \Delta x=\Delta y}
的特性,即可通過克蘭克-尼科爾森方法將得到離散方程
u
i
,
j
n
+
1
=
u
i
,
j
n
+
1
2
a
Δ
t
(
Δ
x
)
2
[
(
u
i
+
1
,
j
n
+
1
+
u
i
−
1
,
j
n
+
1
+
u
i
,
j
+
1
n
+
1
+
u
i
,
j
−
1
n
+
1
−
4
u
i
,
j
n
+
1
)
+
(
u
i
+
1
,
j
n
+
u
i
−
1
,
j
n
+
u
i
,
j
+
1
n
+
u
i
,
j
−
1
n
−
4
u
i
,
j
n
)
]
{\displaystyle {\begin{aligned}u_{i,j}^{n+1}&=u_{i,j}^{n}+{\frac {1}{2}}{\frac {a\Delta t}{(\Delta x)^{2}}}{\big [}(u_{i+1,j}^{n+1}+u_{i-1,j}^{n+1}+u_{i,j+1}^{n+1}+u_{i,j-1}^{n+1}-4u_{i,j}^{n+1})\\&\qquad {}+(u_{i+1,j}^{n}+u_{i-1,j}^{n}+u_{i,j+1}^{n}+u_{i,j-1}^{n}-4u_{i,j}^{n}){\big ]}\end{aligned}}}
此方程可以再重組,配合柯朗數 再進行簡化
μ
=
a
Δ
t
(
Δ
x
)
2
.
{\displaystyle \mu ={\frac {a\Delta t}{(\Delta x)^{2}}}.}
在克蘭克-尼科爾森方法下,不需要為了穩定性而限制柯朗數的上限,不過為了數值穩定度,柯朗數仍不能太高,可以將方程式重寫如下:
(
1
+
2
μ
)
u
i
,
j
n
+
1
−
μ
2
(
u
i
+
1
,
j
n
+
1
+
u
i
−
1
,
j
n
+
1
+
u
i
,
j
+
1
n
+
1
+
u
i
,
j
−
1
n
+
1
)
=
(
1
−
2
μ
)
u
i
,
j
n
+
μ
2
(
u
i
+
1
,
j
n
+
u
i
−
1
,
j
n
+
u
i
,
j
+
1
n
+
u
i
,
j
−
1
n
)
.
{\displaystyle {\begin{aligned}&(1+2\mu )u_{i,j}^{n+1}-{\frac {\mu }{2}}\left(u_{i+1,j}^{n+1}+u_{i-1,j}^{n+1}+u_{i,j+1}^{n+1}+u_{i,j-1}^{n+1}\right)\\&\quad =(1-2\mu )u_{i,j}^{n}+{\frac {\mu }{2}}\left(u_{i+1,j}^{n}+u_{i-1,j}^{n}+u_{i,j+1}^{n}+u_{i,j-1}^{n}\right).\end{aligned}}}
應用在金融數學上
許多的現象都可以用熱方程 (金融數學 上稱為擴散方程)來建模 ,因此克蘭克-尼科爾森方法也可以用在這些領域中[ 4] 。尤其金融衍生工具定價用的布萊克-休斯模型 可以轉換為熱方程,因此期權定價 的數值解 可以用克蘭克-尼科爾森方法求得。
因為期權定價若超過基本假設(例如改變股息)時,無法求得解析解,需要用上述方式求得。不過若是非平滑的最後條件(大部份的金融商品 都是如此),克蘭克-尼科爾森方法會有數值的震盪,無法用濾波方式平緩。在期權定價 上會反映在履約價 Γ的變動。因此,一開始幾個步驟需要用其他比較不會震盪的方法(如全隱式有限差分法)。
相關條目
參考資料