聖彼得堡悖論
此條目沒有列出任何參考或來源。 (2015年9月6日) |
聖彼得堡悖論(St. Petersburg paradox)是決策論中的一個悖論,由尼古拉一世·伯努利提出。1738年,丹尼爾·伯努利以功用理論來解答這個問題,因此形成預期功用理論。
問題內容
1730年代,數學家丹尼爾·伯努利的堂兄尼古拉一世·伯努利,在致法國數學家皮耶·黑蒙·德蒙馬特的信件中,提出一個問題:
有一個「擲硬幣擲到正面為止」的賭局,第一次擲出正面,就給你1元。第一次擲出反面,那就要再擲一次,若第二次擲的是正面,你便賺2元。若第二次擲出反面,那就要擲第三次,若第三次擲的是正面,你便賺2*2元……如此類推,一直擲到正面為止。你可能擲一次,賭局便結束,也可能反覆一直擲,擲個沒完沒了。問題是,你最多肯付多少錢參加這個賭局?
你最多肯付的錢應等於該遊戲的期望值:
這個賭局的期望值是無限大,即你最多肯付出無限的金錢去參加這個遊戲。但是,你更可能只賺到1元,或者2元,或者4元等,而不可能賺到無限的金錢。那你為什麼肯付出無限的金錢參加賭局呢?
如果限定最多可以擲100次(100次都是反面,就不給你錢了),則期望值為50元,但是一般人都不願意真的付50元去參加這個賭局。
實驗的論文解釋
丹尼爾·伯努利在1738年的論文裏,對這個悖論提出了解答,他以功用的概念,來挑戰以金額期望值為決策標準,論文主要包括兩條原理: