比鄰星

在半人马星座的星,为宇宙中距离太阳最近的一颗恒星

比鄰星毗鄰星(英語:Proxima Centauri)是一顆小型低質量恆星,位於半人馬座南部,距太陽4.2465光年(1.3020秒差距),是距離太陽最近的恆星。它由蘇格蘭天文學家羅拔·因尼斯於1915年在南非聯合天文台發現。比鄰星的寧靜視星等為11.13,肉眼難以直接觀察。它屬於南門二恆星系統的第三顆星,因此依拜耳命名法也稱為半人馬座α星C。目前比鄰星與半人馬座α星A和B的距離為12,950 AU(0.2 ly),位於其西南2.18°,軌道週期55萬年。

比鄰星
觀測資料
曆元 J2000.0
星座 半人馬座
星官
赤經 14h 29m 42.94853s[1]
赤緯 −62° 40′ 46.1631″[1]
視星等(V) 10.43 – 11.11[2]
特性
演化階段主序星 (紅矮星)
光譜分類M5.5Ve[3]
U−B 色指數1.26
B−V 色指數1.82
V−R 色指數1.68
R−I 色指數2.04
J−H 色指數0.522
J−K 色指數0.973
變星類型UV Cet + BY Dra[2]
天體測定
徑向速度 (Rv)−22.204±0.032[4] km/s
自行 (μ) 赤經:−3781.741[5] mas/yr
赤緯:769.465[5] mas/yr
視差 (π)768.0665 ± 0.0499[5] mas
距離4.2465 ± 0.0003 ly
(1.30197 ± 8×10−5 pc)
絕對星等 (MV)15.60[6]
軌道[4]
主星半人馬座α星AB
伴星半人馬座α星C(比鄰星)
繞行週期 (P)547000+6600
−4000
yr
半長軸 (a)8700+700
−400
 AU
偏心率 (e)0.50+0.08
−0.09
傾斜角 (i)107.6+1.8
−2.0
°
升交點黃經 (Ω)126±5°
近心點 曆元 (T)+283+59
−41
近心點幅角 (ω)
(secondary)
72.3+8.7
−6.6
°
詳細資料
質量0.1221±0.0022[4] M
半徑0.1542±0.0045[4] R
表面重力 (log g)5.20±0.23[7]
亮度 (bolometric)0.001567+0.000020
[8] L
亮度 (visual, LV)0.00005[a] L
溫度2,992+49
−47
[8] K
金屬量 [Fe/H]0.21[9][b] dex
自轉82.6±0.1[12] days
自轉速度 (v sin i)< 0.1[12] km/s
年齡4.85,[13] Gyr
其他命名
Alf Cen C、​Alpha Centauri C、​V645 Centauri、​GJ 551、​HIP 70890、​CCDM J14396-6050C、​LFT 1110、​LHS 49、​LPM 526、​LTT 5721、​NLTT 37460[14]
參考資料庫
SIMBAD資料
ARICNS資料

比鄰星屬於紅矮星,質量約為太陽(M)的12.2%,平均密度是太陽的33倍。得益於該恆星與地球較近的距離,人們可直接測量其角直徑,它的直徑約為太陽的1/7。雖然比鄰星的光度較低,但其為一顆耀星,因此會不定時因磁場活動出現光度爆發。恆星磁場來自內部對流,活動劇烈時,產生的X射線強度與太陽相當。比鄰星藉助核心的對流混合燃料,加上相對較低的能量產生效率,意味着它仍可作為主序恆星存在4萬億年。

比鄰星系統中有兩顆已知的系外行星比鄰星b比鄰星d,以及一顆可能的系外行星比鄰星c[c]比鄰星b距恆星約0.05 AU(7.5 × 106 km),若以地球時間作為單位,其公轉週期約為11.2天。它的質量至少是地球的1.07倍。比鄰星b位於行星系中的宜居帶,這一區域的溫度適宜地表液態水存在。然而,由於比鄰星是紅矮星且為耀星,恆星活動很可能會對比鄰星b的宜居性英語Habitability of red dwarf systems造成影響。比鄰星c是一顆可能的超級地球[d],它距離恆星1.5 AU(220 × 106 km),軌道週期為1,900天(5.2年)。比鄰星d是一顆次地球[e],距中央恆星0.029 AU(4.3 × 106 km),公轉週期5.1天。

基礎性質

 
三張比鄰星的光變曲線圖。圖A顯示出一次持續數分鐘的強烈光度爆發。圖B為恆星83天自轉週期內的相對光度變化。圖C為6.8年週期(可能是該恆星的磁場週期)光度變化。[f]

比鄰星位於赫羅圖主序星位置,恆星光譜分類為M5.5,因此屬於紅矮星。光譜分類M5.5意味着比鄰星落於低質量M型矮星末端[13],顏色偏紅黃色[17]有效溫度約為3,000K。[7]它的絕對視星等[g]為15.5[18],如果從半人馬座α三合星的其他兩個星觀測,則是4—5等星。[19][20]比鄰星所有波長的總光度只有太陽的0.16%[8],如果只論可見光波長,則只有太陽的0.0056%。[21]它的輻射能量中有85%為紅外輻射[22]

2002年,歐洲南天天文台位於智利的甚大望遠鏡光學干涉測量得到比鄰星的角直徑為1.02 ± 0.08毫角秒。由已知它的距離,推算它的直徑大約是太陽的1/7,或者木星的1.5倍。根據恆星模型推算,比鄰星的質量約爲太陽(M)的12.2%,或者木星(MJ)的129倍。[23]它的質量亦可借微重力透鏡直接計算,但這種方法得出的結果精確性較低,值約為0.150+0.062
−0.051
 M
[24]

低質量主序星的平均密度通常大於高質量主序星[25],比鄰星的平均密度為47.1×103 kg/m3(47.1 g/cm3),相比之下太陽為1.411×103 kg/m3(1.411 g/cm3),因此比鄰星的平均密度大約是太陽的33倍。[h]以10為底的對數形式,以厘米-克-秒制表示,比鄰星的表面重力為5.2[7],是地球的162倍。[i]

1998年對比鄰星的光度測定研究顯示,其完成一次完整自轉的週期約為83.5天。[26]而隨後於2002年進行的色球時間序列分析顯示,比鄰星的自轉週期為116.6±0.7天。[27]但後續研究排除了2002年研究得出的結果,更準確的結果被認為是82.6±0.1天。[12]

結構和核聚變

由於比鄰星質量較低,恆星內部物質完全對流[28],導致核心處的能量由等離子物質的物理運動而非輻射過程帶出至表層。這種對流現象使得熱核聚變生成的不會在核心積累,而是在整個星體內環流。因此,在比鄰星脫離主序階段之前,它能夠利用幾乎所有的燃料進行核聚變。相比之下,太陽只能利用約10%的質量進行核聚變。[29]

對流也造成並維持着比鄰星的磁場,磁場能量透過恆星表面耀斑得到快速釋放,持續時間可能短至10秒[30],引發恆星總體亮度的瞬時增加。2019年5月6日,科學家探測到比鄰星一次介於M和S級之間的耀斑爆發[31],導致其亮度顯著增加,釋放出的紫外輻射達到2×1030 erg[30]這些耀斑可能達到恆星大小,溫度高至2,700萬K[32]——這個溫度足以釋放X射線[33]比鄰星的寧靜X射線亮度約為(4–16) × 1026 erg/s ((4–16) × 1019 W),幾乎和太陽相當。而它在最大型耀斑爆發時的峰值X射線亮度可達到1028 erg/s (1021 W)。[32]

比鄰星的色球層十分活躍,光譜顯示出強烈的單電離譜線,波長280nm[34]比鄰星88%的表面都處於活躍狀態,這個比例遠高於處於太陽週期峰值時的太陽表面活動。即使是在寧靜狀態,很少或幾乎沒有耀斑活動時,其星冕溫度仍能達到350萬K,相比之下太陽星冕溫度只有200萬K[35],並且比鄰星的總X射線強度也與太陽相當。[36]比鄰星的總體活動強度在紅矮星中處於較低水平[36],因為它的年齡已有48.5億年[13],在經歷數十億年後紅矮星的自轉速度降低,活動強度因此減弱。[37]它的活動週期約為442天,短於太陽的11年(約為4,000天)週期。[38][39]

比鄰星的星風較弱,由此造成的質量損失率不超過太陽風的20%。但由於比鄰星的體積較小,因此每單位面積的質量損失可能是太陽表面的8倍。[40]

生命階段

質量類似比鄰星的紅矮星可以在主序星階段維持約4萬億年時間。由於氫核聚變反應使恆星內氦元素的比例增加,隨着時間的推移,恆星的體積會逐漸變小,直至進入「藍矮星」階段。在這個階段,恆星的亮度顯著增加,可以達到太陽光度(L☉)的2.5%,並持續數十億年為其軌道上的天體提供熱量。當氫燃料最終耗盡時,比鄰星將演化為氦白矮星(沒有紅巨星階段),並逐漸失去留存的熱量。[29][41]

比鄰星所在的南門二包含三顆恆星,它最初可能只是一個由約1.5至2倍太陽質量的雙星組成的系統。[42]在星團散開前,這個雙星系統捕獲了另一個質量較低的恆星(也即比鄰星),從而形成了現在的三合星系統。然而,為了確認這個假說,還需要更準確地測量恆星的徑向速度[43]如果比鄰星是在恆星形成期被捕獲的,那麼這三顆恆星可能具有類似的元素構成。比鄰星的重力會干擾雙星的原行星盤,將揮發成分(如水)輸送到較乾燥的區域,從而使這些物質在類地行星富集。[43]而假如比鄰星是在較晚時才被捕獲至雙星系統的,那麼它最初可能具有一個高離心軌道,經由星系潮汐與其它星際物質而逐漸穩定下來。如果依照上述說法,那麼比鄰星對行星軌道的干擾影響將會更小。[11]隨着南門二雙星的演化,其質量將不斷減少,比鄰星可能會在大約35億年後脫離當前的三合星系統,並在此後逐漸遠離這對雙星。[44]

運動和位置

 
距離太陽最近的恆星示意圖。

基於蓋亞任務發表於2020年的第三批數據(Gaia DR3),從測得的視差768.0665±0.0499 mas可推算比鄰星距離太陽4.2465光年(1.3020秒差距;268,550天文單位)。[5]先前的測量數據有2018年蓋亞任務第二批數據(Gaia DR2)測得的768.5±0.2 mas,2014年由近星研究會測得的768.13±1.04 mas[45],1997年依巴谷衛星初始數據772.33±2.42 mas[46],2007年重新處理的依巴谷衛星數據771.64±2.60 mas[1],以及1999年透過哈勃太空望遠鏡精細導星感測器測得的768.77±0.37 mas[6]從地球視角看來,比鄰星位於南門二另外兩顆恆星2.18度位置[47],或四倍於滿月直徑。[48]比鄰星的自行相對較高,在天空中每年移動約3.85角秒[49]它面向太陽的徑向速度為22.2 km/s。[4]在比鄰星看來,太陽位於仙后座,亮度為0.4星等,類似於從地球上觀察到的水委一南河三[j]

比鄰星在大約32,000年前成為距離太陽最近的恆星,並在後續25,000年內仍是如此。再之後半人馬座α星A半人馬座α星B將會以約79.91年為週期交替成為距離太陽最近的恆星。2001年,有學者推測比鄰星將會在26,700年後到達與太陽最近的距離3.11 ly(0.95 pc)。[50]2010年的研究預測,比鄰星將在大約27,400年後到達與太陽最接近的2.90 ly(0.89 pc)。[51]2014年另一項研究預測比鄰星會在26,710年前後到達與太陽最接近的3.07 ly(0.94 pc)。[52]比鄰星正在穿越銀河系,與銀河系中心的距離在27至31 kly(8.3至9.5 kpc)之間變化,軌道離心率為0.07。[53]

南門二

自發現以來,人們就推測比鄰星是南門二的雙星系統的伴星,因此比鄰星有時也被稱為半人馬座α星C。通過對依巴谷衛星和地面觀測數據的分析,科學家確定了這一伴星假說:比鄰星與南門二的雙星是由重力結合的恆星系統。2017年的一項研究使用高精度徑向速度測量得出,比鄰星有極高可能性受南門二重力束縛。[4]比鄰星圍繞雙星系統質心的軌道週期為547000+6600
−4000
年,離心率0.5±0.08近拱點4300+1100
−900
 AU
遠拱點13000+300
−100
 AU
[4]當前比鄰星距雙星質心12,947 ± 260 AU(1.94 ± 0.04 × 1012 km),接近遠拱點。[4]

在天空中,有6顆恆星、2個雙星系統,以及一個三合星系統與比鄰星及南門二保持一致的運動。[k]這些恆星的空間速度均在比鄰星本動速度的10km/s內,因此它們或許是來自同一起源的移動星群,比如源於同一星團[54]

行星系統

比鄰星的行星系[55][56][57][58][59][60][61]
成員
(依恆星距離)
質量 半長軸
(AU)
軌道週期
()
離心率 傾角 半徑
比鄰星d ≥0.26±0.05 M 0.02885+0.00019
−0.00022
5.122+0.002
−0.0036
0.04+0.15
−0.04
0.81±0.08 R
比鄰星b 1.07±0.06 M 0.04857+0.00029
−0.00029
11.18418+0.00068
−0.00074
0.109+0.076
−0.068
≙1.30+1.20
−0.62
 R
比鄰星c (有爭議[62][63]) 7±1 M 1.489±0.049 1928±20 0.04±0.01
 
三顆行星環繞比鄰星示意圖,綠色為宜居帶。

截止2022年,在比鄰星系統已觀測到三顆行星(2顆已確認,1顆尚有爭議)。其中比鄰星d是迄今為止通過徑向速度法測得的質量最輕的系外行星之一;比鄰星b大小與地球相當,並位於宜居帶;比鄰星c是一顆可能的氣態矮星[l],公轉軌道半徑比另外兩顆行星更遠。

人們從1970年代就開始着手探測比鄰星系統中可能存在的系外行星。1990年代,多個測量結果限定了比鄰星可能存在的行星的最大質量。[64][65]不過,比鄰星的恆星活動也對徑向速度測量方法造成了諸多干擾。[66]1998年,一項利用哈勃天文望遠鏡暗天體攝譜儀的觀測顯示,比鄰星系統中存在有一顆軌道半徑為0.5 AU(75 × 106 km)的行星。[67]然而,後續使用第二代廣域和行星照相機並沒有找到可能的目標。[68]托洛洛山美洲際天文台天體測量排除了可能存在軌道週期為2至12年、大小類似木星的行星的可能性。[69]

2017年,一個天文研究團隊使用阿塔卡馬大型毫米波/亞毫米波陣列發現了一個環繞於比鄰星1—4 AU距離的寒冷塵埃帶。該塵埃帶的溫度在40K左右,總質量相當於地球質量的1%。初步測量還顯示出另外兩個特徵:一個環繞於30 AU的溫度為10K的塵埃帶。以及位於恆星1.2角秒處的緻密發射源。此外,在距離恆星0.4 AU處或許還有一個相對溫暖的塵埃帶。[70]然而,進一步分析表明,上述塵埃帶更有可能是比鄰星於2017年3月發生的大型耀斑所致,對觀測結果的建模並不需要假設這些塵埃帶。[71][72]

比鄰星b

比鄰星b也稱半人馬座α星Cb,在0.05 AU(7.5 × 106 km)距離環繞比鄰星運動,公轉週期約11.2地球天。該行星質量估計至少是地球的1.17倍[73],地表溫度範圍被認為適合液態水存在,因此處於恆星宜居帶[55][74][75]

2013年,赫特福德大學的米科·圖米英語Mikko Tuomi最早從歸檔數據中注意到比鄰星b可能存在的痕跡。[76][77]為確認這一發現,一個科學團隊於2016年1月啟動了「暗淡紅點」計劃。[m][78]2016年8月24日,由倫敦瑪麗女王大學吉列姆·安格拉達-埃斯庫德英語Guillem Anglada-Escudé領導的31人國際天文小組[79]在《自然》期刊一篇經同行評審的文章中確認了比鄰星b的存在。[80][55][81]該計劃使用了兩個光譜儀:拉西拉天文台ESO 3.6米望遠鏡上的高精度徑向速度行星搜索器,以及帕瑞納天文台8米口徑甚大望遠鏡上的UVES光譜儀法語Ultraviolet and Visual Echelle Spectrograph[55]科學家也多次嘗試探測該行星過比鄰星的現象,並於2016年9月8日藉助位於南極洲中山站的亮星巡天光學望遠鏡初步確認一次疑似凌星事件。[82]

2016年確認比鄰星b存在的論文還顯示存在有60至500天範圍的第二個信號。然而,因恆星活動影響以及採樣不足問題,該證據仍難以確認。[55]

比鄰星c

比鄰星c是一顆超級地球(或氣態矮星),質量約為地球7倍,軌道半徑1.5 AU(220 × 106 km),公轉週期1,900日(5.2年)。[83]如果把比鄰星b比作太陽系中的地球,那麼比鄰星c就相當於海王星的大小和距離。由於軌道半徑較遠,比鄰星c的宜居性較低,平衡溫度約在39K左右。[84]比鄰星c最初由意大利天文學家馬里奧·達馬索(Mario Damasso)領導的團隊於2019年發現[84][83],證據源自ESO 3.6米望遠鏡上高精度徑向速度行星搜索器有關比鄰星徑向速度的微小運動。[84]2020年,科學家根據哈勃天文望遠鏡在約1995年獲取的測量數據確認了這一發現。[85]極化光譜高對比度系外行星研究相機英語Spectro-Polarimetric High-Contrast Exoplanet Research曾捕獲一個可能的比鄰星c直接圖像,但研究者承認該結果尚無法確認。如果他們拍攝到的目標的確是比鄰星b,似乎圖像中的亮度相對此行星的質量與年齡而言過高,這或許暗示行星帶有一個環系統,其半徑約為5RJ[86]2022年發表的一篇研究對確認此行星所用的徑向速度數據提出了質疑。[87]

比鄰星d

2019年,一個研究團隊在使用ESPRESSO英語ESPRESSO評估比鄰星b的質量時,注意到另一個以5.15天為週期的徑向速度突變。分析表明,該週期變化可能為另一行星候選者,其質量不低於地球質量的29%。[59]這顆新行星於後續研究得到確認,結果在2022年2月發表。[61]

宜居性

 
比鄰星宜居帶(右側圖片綠色環狀部分)與太陽系水星軌道(左側圖片)對比。

早在比鄰星b發現之前,美國國家地理頻道紀錄片《地外生命》(Extraterrestrial)就假設了一顆環繞類似比鄰星的紅矮星運行的系外行星。這顆假想行星位於宜居帶,就比鄰星而言,宜居帶距中央恆星大約0.023—0.054 AU(3.4—8.1 × 106 km),環繞週期在3.6至14天[88],處於該位置的行星很可能會被潮汐鎖定。如果行星的軌道離心率很低,那麼比鄰星在該星球天空中的位置幾乎不會發生變化。因此,行星上大部分區域都會處於極晝或是極夜狀態。行星上的大氣層可以發揮能量調節作用,將受到陽光照耀一面的能量分配至處於黑暗中的區域。[89]

然而,比鄰星的耀斑爆發很可能會破壞位於宜居帶中星球的大氣。針對這一疑慮,《地外生命》紀錄片中接受採訪的科學家認為這並非是不可避免的障礙,加利福尼亞大學伯克利分校的天文學家吉博爾·巴斯里英語Gibor Basri表示,「沒有人發現有任何阻礙宜居性的因素。」舉例來說,有人擔憂源自恆星的帶電粒子可能剝奪行星大氣層,但如果行星具有強大的磁場,便可藉此偏移帶電粒子。即使是被潮汐鎖定的天體,只要行星內部仍保持熔融狀態,它在公轉週期內緩慢完成的一次自轉也足以生成磁場。[90]

不過,部分科學家(尤其是地球殊異假說的擁護者[91])認為紅矮星系統不太可能孕育生命。他們表示,任何處於比鄰星宜居帶的行星都很可能被潮汐鎖定,因此行星的磁矩相對較弱,很容易受到來自恆星日冕物質拋射的影響而失去大氣層。[92]

2020年12月,搜尋地外文明計劃探測到可能來自比鄰星的一個信號,其被命名為BLC1英語BLC1[93],然而後續被確定為人為無線電干擾。[94]

觀測歷史

 
比鄰星的位置(圖中紅圈)

1915年,時任南非約翰內斯堡聯合天文台主管的蘇格蘭天文學家羅拔·因尼斯發現,有一顆恆星的自行南門二一致。[95][96][97]他主張將這顆恆星命名為Proxima Centauri[98](實際上是Proxima Centaurus)。[99]1917年,荷蘭天文學家瓊·沃特英語Joan Voûte在南非好望角皇家天文台測得該恆星三角視差0.755±0.028,並得出結論:比鄰星與太陽的距離和南門二相同。在當時,比鄰星是已知光度最低的恆星。[100]1928年,美國天文學家哈羅德·奧爾登英語Harold Alden亦得出同等精度測量結果,並證實了因內斯關於比鄰星比南門二距離更近的說法,測得視差為0.783″±0.005″[96][98]

1951年,美國天文學家哈羅·沙普利發現比鄰星為耀星。根據對過去天文影像的分析,比鄰星大約在8%的圖像中表現出可測量的星等增加,這使得它成為了當時已知最活躍的耀星。[101][102]該恆星較近的距離也方便科學家觀測其耀斑活動。1980年,愛因斯坦衛星藉助觀測數據生成了詳細的比鄰星恆星耀斑X射線能量曲線。後續EXOSAT英語EXOSAT倫琴衛星也觀測到比鄰星的耀斑活動,1995年日本宇宙與天體物理先進衛星英語Advanced Satellite for Cosmology and Astrophysics觀測到規模較小的類太陽耀斑X射線。[103]比鄰星自此成為諸多X射線觀測設備,如XMM-牛頓衛星錢德拉X射線天文台的研究目標。[32]

從地球觀察,比鄰星位於天頂以南,因此它只能在北緯27度線以南觀察到。[n]與比鄰星類似的紅矮星光度較暗,僅憑肉眼無法觀察。即使是在同為南門二恆星系統的半人馬座α星A和半人馬座α星B看來,比鄰星也僅為4—5等星。[19][20]比鄰星的視星等為11等,因此即使在理想條件[o]下,仍需要使用光圈大於8 cm(3.1英寸)的望遠鏡對其觀測。[104]2016年,國際天文學聯合會組織了IAU恆星名稱工作組WGSN),為各恆星分類並制定標準名稱。[105]2016年8月21日,WGSN批准將Proxima Centauri作為比鄰星的標準名稱,並將其歸入IAU 批准的星名列表英語List of proper names of stars[106]

2016年,在比鄰星上觀測到有記錄以來以來最強的超級閃焰。在此期間恆星的光亮度增加68倍,達到6.8星等。科學家猜測這類強烈的爆發每隔5年左右便會出現,但因其持續時間極短(只持續幾分鐘),因此過去從未觀測到。[15]2020年4月22日和23日,新視野號拍攝了兩顆距離太陽最近的恆星——比鄰星和沃夫359的照片,與從地球拍攝的圖像相比,可分辨出非常明顯的視差效果。不過上述圖像僅用作說明目的,並未提升先前對比鄰星的測量精度。[107][108]

未來探索

比鄰星因其與地球較近距離而常被設想為星際旅行目標。[109]如果使用非核能驅動的傳統推動裝置,太空飛船從地球飛至比鄰星需要花費數千年。[110]旅行者一號為例,它當前相對太陽的速度為17 km/s(38,000 mph)[111],若以此速度朝向比鄰星前進,則需要花費73,775年到達目的。移動速度緩慢的探測器只有在未來數萬年時間窗口內才有機會接近比鄰星,在此之後比鄰星將會逐漸遠離地球。[112]

使用核能驅動的探測器或許可以在數個世紀內完成這一旅程,與此相關的研究包括獵戶座計劃代達羅斯計劃長程計劃英語Project Longshot[112]突破攝星項目計劃在21世紀上半葉抵達比鄰星,為實現這一目標,地球上的激光陣列將為探測器提供約100吉瓦能量,將其加速至光速的20%。[113]該探測任務的目標為飛掠比鄰星,拍攝照片並採集行星大氣組成數據,數據傳回地球需要4.25年的時間。[114]

相關條目

註釋

  1. ^ 根據比鄰星的絕對視星等  和太陽的絕對視星等 ,可計算出比鄰星的視亮度:  
  2. ^ 如果比鄰星是後續被捕獲進入南門二恆星系統的,那麼它的金屬豐度和年齡可能與阿爾法半人馬星A和B有很大差別。通過將比鄰星與其他類似恆星進行比較,科學家估計其金屬豐度範圍從小於太陽的1/3到與太陽相當。[10][11]
  3. ^ 太陽系外行星的命名依照國際天文聯會規定,依照發現時間順序依次命名為b、c、d……,而比鄰星a指代比鄰星這顆恆星。
  4. ^ 質量高於地球,但遠低於冰巨星(例如天王星海王星)的系外行星。
  5. ^ 質量遠低於地球或金星的系外行星。
  6. ^ 示意圖修改自Howard et al.[15]和Mascareño et al.[16]
  7. ^ 絕對視星等是指把天體放在10秒差距(33 ly)距離時呈現出的視星等
  8. ^ 密度 (ρ) 等於質量除以體積。因此比鄰星相對太陽的密度計算過程如下:
      =  
       = 0.122 · 0.154−3 · (1.41 × 103 kg/m3)
       = 33.4 · (1.41 × 103 kg/m3)
       = 4.71 × 104 kg/m3

    其中  是太陽的平均密度。參見:
    • Munsell, Kirk; Smith, Harman; Davis, Phil; Harvey, Samantha. Sun: facts & figures. Solar system exploration. NASA. 2008-06-11 [2008-07-12]. (原始內容存檔於2008-01-02). 
    • Bergman, Marcel W.; Clark, T. Alan; Wilson, William J. F. Observing projects using Starry Night Enthusiast 8th. Macmillan. 2007: 220–221. ISBN 978-1-4292-0074-5. 
  9. ^ 地球表面重力為980.665 cm/s2,若以對數表示是2.992。計算比鄰星和地球的對數表面重力差:5.20 − 2.99 = 2.21,然後計算102.21 = 162,因此比鄰星表面重力為地球的162倍。關於地球的重力參見:
    • Taylor, Barry N. (編). The International System of Units (SI) (PDF). NIST Special Publication 330 (United States Department of Commerce: National Institute of Standards and Technology). 2001: 29 [2012-03-08]. (原始內容存檔 (PDF)於2022-09-23). 
  10. ^ 如果以比鄰星為參照點,那麼太陽的位置將與其相對,赤徑α=02h 29m 42.9487s,赤緯δ=+62° 40′ 46.141″。太陽的絕對星等Mv=4.83,因此在視差π=0.77199的情況下,太陽的視星等m=4.83 − 5(log10(0.77199) + 1) = 0.40。參見:Tayler, Roger John. The Stars: Their Structure and Evolution . Cambridge University Press. 1994: 16. ISBN 978-0-521-45885-6. 
  11. ^ 這些共同運動的恆星包括HD 4391矩尺座γ2葛利斯676
  12. ^ 又稱為迷你海王星,其質量低於太陽系中的天王星海王星,但性質相當類似。
  13. ^ 「暗淡紅點」這一計劃名稱致敬了由旅行者1號拍攝的地球照片「暗淡藍點」。
  14. ^ 對於處在天頂以南的恆星,其與天頂的角度等於觀察所處的緯度減去該星的赤緯。當它與天頂的角度大於等於90°時,恆星因位於地平線以下而無法觀察。因此對比鄰星而言,它的最高可觀測緯度為:90° + (−62.68°) = 27.32°
    參見:Campbell, William Wallace. The elements of practical astronomy. London: Macmillan. 1899: 109–110 [2008-08-12]. 
  15. ^ 清澈、無光污染的夜空,並且觀測目標高於地平線

參考來源

  1. ^ 1.0 1.1 1.2 Van Leeuwen, F. Validation of the new Hipparcos reduction. Astronomy and Astrophysics. 2007, 474 (2): 653–664. Bibcode:2007A&A...474..653V. S2CID 18759600. arXiv:0708.1752 . doi:10.1051/0004-6361:20078357. 
  2. ^ 2.0 2.1 Samus', N. N; Kazarovets, E. V; Durlevich, O. V; Kireeva, N. N; Pastukhova, E. N. General catalogue of variable stars. Astronomy Reports. GCVS 5.1. 2017, 61 (1): 80. Bibcode:2017ARep...61...80S. S2CID 125853869. doi:10.1134/S1063772917010085. 
  3. ^ Bessell, M. S. The late-M dwarfs. The Astronomical Journal. 1991, 101: 662. Bibcode:1991AJ....101..662B. doi:10.1086/115714. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Kervella, P.; Thévenin, F.; Lovis, C. Proxima's orbit around α Centauri. Astronomy & Astrophysics. 2017, 598: L7. Bibcode:2017A&A...598L...7K. ISSN 0004-6361. S2CID 50867264. arXiv:1611.03495 . doi:10.1051/0004-6361/201629930.  Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.
  5. ^ 5.0 5.1 5.2 5.3 Brown, A. G. A.; et al. Gaia Early Data Release 3: Summary of the contents and survey properties. Astronomy & Astrophysics. 2021, 649: A1. Bibcode:2021A&A...649A...1G. S2CID 227254300. arXiv:2012.01533 . doi:10.1051/0004-6361/202039657 .  已忽略未知參數|collaboration= (幫助) (勘誤: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  6. ^ 6.0 6.1 Benedict, G. Fritz; Chappell, D. W.; Nelan, E.; Jefferys, W. H.; Van Altena, W.; Lee, J.; Cornell, D.; Shelus, P. J. Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: detection limits for substellar companions. The Astronomical Journal. 1999, 118 (2): 1086–1100. Bibcode:1999AJ....118.1086B. S2CID 18099356. arXiv:astro-ph/9905318 . doi:10.1086/300975. 
  7. ^ 7.0 7.1 7.2 Ségransan, Damien; Kervella, Pierre; Forveille, Thierry; Queloz, Didier. First radius measurements of very low mass stars with the VLTI. Astronomy and Astrophysics. 2003, 397 (3): L5–L8. Bibcode:2003A&A...397L...5S. S2CID 10748478. arXiv:astro-ph/0211647 . doi:10.1051/0004-6361:20021714. 
  8. ^ 8.0 8.1 8.2 Pineda, J. Sebastian; Youngblood, Allison; France, Kevin. The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars. The Astrophysical Journal. September 2021, 918 (1): 23. Bibcode:2021ApJ...918...40P. S2CID 235435757. arXiv:2106.07656 . doi:10.3847/1538-4357/ac0aea. 40. 
  9. ^ Schlaufman, K. C.; Laughlin, G. A physically-motivated photometric calibration of M dwarf metallicity. Astronomy and Astrophysics. September 2010, 519: A105. Bibcode:2010A&A...519A.105S. S2CID 119260592. arXiv:1006.2850 . doi:10.1051/0004-6361/201015016. 
  10. ^ Passegger, Vera Maria; Wende-von Berg, Sebastian; Reiners, Ansgar. Fundamental M-dwarf parameters from high-resolution spectra using PHOENIX ACES models. I. Parameter accuracy and benchmark stars. Astronomy & Astrophysics. March 2016, 587. A19. Bibcode:2016A&A...587A..19P. ISSN 0004-6361. S2CID 10458151. arXiv:1709.03560 . doi:10.1051/0004-6361/201322261. 
  11. ^ 11.0 11.1 Feng, F.; Jones, H. R. A. Was Proxima captured by Alpha Centauri A and B?. Monthly Notices of the Royal Astronomical Society. January 2018, 473 (3): 3185−3189. Bibcode:2018MNRAS.473.3185F. S2CID 55711316. arXiv:1709.03560 . doi:10.1093/mnras/stx2576. 
  12. ^ 12.0 12.1 12.2 Collins, John M.; Jones, Hugh R. A.; Barnes, John R. Calculations of periodicity from Hα profiles of Proxima Centauri. Astronomy & Astrophysics. June 2017, 602. A48. Bibcode:2017A&A...602A..48C. S2CID 18949162. arXiv:1608.07834 . doi:10.1051/0004-6361/201628827.  See section 4: "the vsini is probably less than 0.1 km/s for Proxima Centauri".
  13. ^ 13.0 13.1 13.2 Kervella, Pierre; Thevenin, Frederic. A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars. European Southern Observatory. 2003-03-15 [2016-05-10]. (原始內容存檔於2020-03-09). 
  14. ^ Proxima centauri. SIMBAD. 斯特拉斯堡天文資料中心. —some of the data is located under "Measurements".
  15. ^ 15.0 15.1 Howard, Ward S.; Tilley, Matt A.; Corbett, Hank; Youngblood, Allison; Loyd, R. O. Parke; Ratzloff, Jeffrey K.; Law, Nicholas M.; Fors, Octavi; Del Ser, Daniel; Shkolnik, Evgenya L.; Ziegler, Carl; Goeke, Erin E.; Pietraallo, Aaron D.; Haislip, Joshua. The First Naked-eye Superflare Detected from Proxima Centauri. The Astrophysical Journal. 2018, 860 (2): L30. Bibcode:2018ApJ...860L..30H. S2CID 59127420. arXiv:1804.02001 . doi:10.3847/2041-8213/aacaf3. 
  16. ^ Mascareño, A. Suárez; Rebolo, R.; González Hernández, J. I. Magnetic cycles and rotation periods of late-type stars from photometric time series. Astronomy & Astrophysics. October 2016, 595: A12 [2021-11-30]. Bibcode:2016A&A...595A..12S. S2CID 118555782. arXiv:1607.03049 . doi:10.1051/0004-6361/201628586. (原始內容存檔於2023-05-18). 
  17. ^ Czysz, Paul A.; Bruno, Claudio. Future Spacecraft Propulsion Systems: Enabling Technologies for Space Exploration. Springer Berlin Heidelberg. 2009: 36 [2023-05-13]. ISBN 9783540888147. (原始內容存檔於2023-05-13). 
  18. ^ Kamper, K. W.; Wesselink, A. J. Alpha and Proxima Centauri. Astronomical Journal. 1978, 83: 1653–1659. Bibcode:1978AJ.....83.1653K. doi:10.1086/112378. 
  19. ^ 19.0 19.1 Proxima Centauri UV flux distribution. ESA & The Astronomical Data Centre at CAB. [2007-07-11]. (原始內容存檔於2016-03-03). 
  20. ^ 20.0 20.1 Kaler, James B. Rigil Kentaurus. STARS. University of Illinois. 2016-11-07 [2008-08-03]. (原始內容存檔於2014-07-11). 
  21. ^ Binney, James; Tremaine, Scott. Galactic dynamics. Princeton, New Jersey: Princeton University Press. 1987: 8. ISBN 978-0-691-08445-9. 
  22. ^ Leggett, S. K. Infrared colors of low-mass stars. Astrophysical Journal Supplement Series. 1992, 82 (1): 351–394, 357. Bibcode:1992ApJS...82..351L. doi:10.1086/191720. 
  23. ^ Queloz, Didier. How Small are Small Stars Really?. European Southern Observatory. 2002-11-29 [2016-09-05]. (原始內容存檔於2022-09-04). 
  24. ^ Zurlo, A.; Gratton, R.; Mesa, D.; Desidera, S.; Enia, A.; Sahu, K.; Almenara, J. -M.; Kervella, P.; Avenhaus, H.; Girard, J.; Janson, M.; Lagadec, E.; Langlois, M.; Milli, J.; Perrot, C.; Schlieder, J. -E.; Thalmann, C.; Vigan, A.; Giro, E.; Gluck, L.; Ramos, J.; Roux, A. The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event. Monthly Notices of the Royal Astronomical Society. 2018, 480 (1): 236. Bibcode:2018MNRAS.480..236Z. S2CID 118971274. arXiv:1807.01318 . doi:10.1093/mnras/sty1805. 
  25. ^ Zombeck, Martin V. Handbook of space astronomy and astrophysics  Third. Cambridge, UK: Cambridge University Press. 2007: 109. ISBN 978-0-521-78242-5. 
  26. ^ Benedict, G. F.; McArthur, B.; Nelan, E.; Story, D.; Whipple, A. L.; Shelus, P. J.; Jefferys, W. H.; Hemenway, P. D.; Franz, Otto G. Photometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: a search for periodic variations. The Astronomical Journal. 1998, 116 (1): 429–439. Bibcode:1998AJ....116..429B. S2CID 15880053. arXiv:astro-ph/9806276 . doi:10.1086/300420. 
  27. ^ Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.; Esposito, M. Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators. Monthly Notices of the Royal Astronomical Society. September 2015, 452 (3): 2745–2756. Bibcode:2015MNRAS.452.2745S. S2CID 119181646. arXiv:1506.08039 . doi:10.1093/mnras/stv1441. 
  28. ^ Yadav, Rakesh K.; Christensen, Ulrich R.; Wolk, Scott J.; Poppenhaeger, Katja. Magnetic Cycles in a Dynamo Simulation of Fully Convective M-star Proxima Centauri. The Astrophysical Journal Letters. December 2016, 833 (2): 6. Bibcode:2016ApJ...833L..28Y. S2CID 54849623. arXiv:1610.02721 . doi:10.3847/2041-8213/833/2/L28. L28. 
  29. ^ 29.0 29.1 Adams, Fred C.; Laughlin, Gregory; Graves, Genevieve J. M. Red dwarfs and the end of the main sequence (PDF). Gravitational collapse: from massive stars to planets (Revista Mexicana de Astronomía y Astrofísica): 46–49. [2008-06-24]. (原始內容存檔 (PDF)於2019-07-11). 
  30. ^ 30.0 30.1 MacGregor, Meredith A.; Weinberger, Alycia J.; Parke Loyd, R. O.; Shkolnik, Evgenya; Barclay, Thomas; Howard, Ward S.; Zic, Andrew; Osten, Rachel A.; Cranmer, Steven R.; Kowalski, Adam F.; Lenc, Emil; Youngblood, Allison; Estes, Anna; Wilner, David J.; Forbrich, Jan; Hughes, Anna; Law, Nicholas M.; Murphy, Tara; Boley, Aaron; Matthews, Jaymie. Discovery of an Extremely Short Duration Flare from Proxima Centauri Using Millimeter through Far-ultraviolet Observations. The Astrophysical Journal Letters. 2021, 911 (2): L25. Bibcode:2021ApJ...911L..25M. S2CID 233307258. arXiv:2104.09519 . doi:10.3847/2041-8213/abf14c. 
  31. ^ Howard, Ward S.; MacGregor, Meredith A.; Osten, Rachel; Forbrich, Jan; Cranmer, Steven R.; Tristan, Isaiah; Weinberger, Alycia J.; Youngblood, Allison; Barclay, Thomas; Parke Loyd, R. O.; Shkolnik, Evgenya L.; Zic, Andrew; Wilner, David J., The Mouse That Squeaked: A Small Flare from Proxima Cen Observed in the Millimeter, Optical, and Soft X-Ray with Chandra and ALMA, The Astrophysical Journal, 2022, 938 (2): 103, arXiv:2209.05490 , doi:10.3847/1538-4357/ac9134 
  32. ^ 32.0 32.1 32.2 Guedel, M.; Audard, M.; Reale, F.; Skinner, S. L.; Linsky, J. L. Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton. Astronomy and Astrophysics. 2004, 416 (2): 713–732. Bibcode:2004A&A...416..713G. S2CID 7725125. arXiv:astro-ph/0312297 . doi:10.1051/0004-6361:20031471. 
  33. ^ Proxima Centauri: the nearest star to the Sun. Harvard-Smithsonian Center for Astrophysics. 2006-08-30 [2007-07-09]. (原始內容存檔於2015-11-26). 
  34. ^ E. F., Guinan; Morgan, N. D. Proxima Centauri: rotation, chromospheric activity, and flares. Bulletin of the American Astronomical Society. 1996, 28: 942. Bibcode:1996AAS...188.7105G. 
  35. ^ Wargelin, Bradford J.; Drake, Jeremy J. Stringent X-ray constraints on mass loss from Proxima Centauri. The Astrophysical Journal. 2002, 578 (1): 503–514. Bibcode:2002ApJ...578..503W. doi:10.1086/342270 . 
  36. ^ 36.0 36.1 Wood, B. E.; Linsky, J. L.; Müller, H.-R.; Zank, G. P. Observational estimates for the mass-loss rates of α Centauri and Proxima Centauri using Hubble Space Telescope Lyα spectra. The Astrophysical Journal. 2001, 547 (1): L49–L52. Bibcode:2001ApJ...547L..49W. S2CID 118537213. arXiv:astro-ph/0011153 . doi:10.1086/318888. 
  37. ^ Stauffer, J. R.; Hartmann, L. W. Chromospheric activity, kinematics, and metallicities of nearby M dwarfs. Astrophysical Journal Supplement Series. 1986, 61 (2): 531–568. Bibcode:1986ApJS...61..531S. doi:10.1086/191123. 
  38. ^ Pulliam, Christine. Proxima Centauri Might Be More Sunlike Than We Thought. Smithsonian Insider. 2016-10-12 [2020-07-07]. (原始內容存檔於2023-05-16). 
  39. ^ Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D. A possible activity cycle in Proxima Centauri. Astronomy and Astrophysics. 2007, 461 (3): 1107–1113. Bibcode:2007A&A...461.1107C. S2CID 14672316. arXiv:astro-ph/0703514 . doi:10.1051/0004-6361:20066027. 
  40. ^ Wood, B. E.; Linsky, J. L.; Muller, H.-R.; Zank, G. P. Observational estimates for the mass-loss rates of Alpha Centauri and Proxima Centauri using Hubble Space Telescope Lyman-alpha spectra. Astrophysical Journal. 2000, 537 (2): L49–L52. Bibcode:2000ApJ...537..304W. S2CID 119332314. arXiv:astro-ph/0011153 . doi:10.1086/309026. 
  41. ^ Adams, Fred C. & Laughlin, Gregory. A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects. Reviews of Modern Physics. 1997, 69 (2): 337–372. Bibcode:1997RvMP...69..337A. S2CID 12173790. arXiv:astro-ph/9701131 . doi:10.1103/RevModPhys.69.337. 
  42. ^ Kroupa, Pavel. The dynamical properties of stellar systems in the Galactic disc. MNRAS. 1995, 277 (4): 1507–1521. Bibcode:1995MNRAS.277.1507K. S2CID 15557806. arXiv:astro-ph/9508084 . doi:10.1093/mnras/277.4.1507. 
  43. ^ 43.0 43.1 Wertheimer, Jeremy G.; Laughlin, Gregory. Are Proxima and α Centauri gravitationally bound?. The Astronomical Journal. 2006, 132 (5): 1995–1997. Bibcode:2006AJ....132.1995W. S2CID 16650143. arXiv:astro-ph/0607401 . doi:10.1086/507771. 
  44. ^ Beech, M. The Far Distant Future of Alpha Centauri. Journal of the British Interplanetary Society. 2011, 64: 387–395. Bibcode:2011JBIS...64..387B. 
  45. ^ Lurie, John C.; Henry, Todd J.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Ianna, Philip A.; Koerner, David W.; Riedel, Adric R.; Subasavage, John P. The Solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry. The Astronomical Journal. 2014, 148 (5): 91. Bibcode:2014AJ....148...91L. S2CID 118492541. arXiv:1407.4820 . doi:10.1088/0004-6256/148/5/91. 
  46. ^ Perryman, M. A. C.; Lindegren, L.; Kovalevsky, J.; Hoeg, E.; Bastian, U.; Bernacca, P. L.; Crézé, M.; Donati, F.; Grenon, M.; Grewing, M.; van Leeuwen, F.; van der Marel, H.; Mignard, F.; Murray, C. A.; Le Poole, R. S.; Schrijver, H.; Turon, C.; Arenou, F.; Froeschlé, M.; Petersen, C. S. The Hipparcos catalogue. Astronomy and Astrophysics. July 1997, 323: L49–L52. Bibcode:1997A&A...323L..49P. 
  47. ^ Kirkpatrick, J. D.; Davy, J.; Monet, David G.; Reid, I. Neill; Gizis, John E.; Liebert, James; Burgasser, Adam J. Brown dwarf companions to G-type stars. I: Gliese 417B and Gliese 584C. The Astronomical Journal. 2001, 121 (6): 3235–3253. Bibcode:2001AJ....121.3235K. S2CID 18515414. arXiv:astro-ph/0103218 . doi:10.1086/321085. 
  48. ^ Williams, D. R. Moon Fact Sheet. Lunar & Planetary Science. NASA. 2006-02-10 [2007-10-12]. (原始內容存檔於2008-12-16). 
  49. ^ Benedict, G. F.; Mcarthur, B.; Nelan, E.; Story, D.; Jefferys, W. H.; Wang, Q.; Shelus, P. J.; Hemenway, P. D.; Mccartney, J.; Van Altena, Wm. F.; Duncombe, R.; Franz, O. G.; Fredrick, L. W. Astrometric stability and precision of fine guidance sensor #3: the parallax and proper motion of Proxima Centauri (PDF). Proceedings of the HST calibration workshop: 380–384. [2007-07-11]. (原始內容存檔 (PDF)於2016-09-09). 
  50. ^ García-Sánchez, J.; Weissman, P. R.; Preston, R. A.; Jones, D. L.; Lestrade, J.-F.; Latham, . W.; Stefanik, R. P.; Paredes, J. M. Stellar encounters with the solar system (PDF). Astronomy and Astrophysics. 2001, 379 (2): 634–659 [2023-05-19]. Bibcode:2001A&A...379..634G. doi:10.1051/0004-6361:20011330 . (原始內容存檔 (PDF)於2018-07-24). 
  51. ^ Bobylev, V. V. Searching for stars closely encountering with the solar system. Astronomy Letters. March 2010, 36 (3): 220–226. Bibcode:2010AstL...36..220B. S2CID 118374161. arXiv:1003.2160 . doi:10.1134/S1063773710030060. 
  52. ^ Bailer-Jones, C. A. L. Close encounters of the stellar kind. Astronomy & Astrophysics. March 2015, 575: 13. Bibcode:2015A&A...575A..35B. S2CID 59039482. arXiv:1412.3648 . doi:10.1051/0004-6361/201425221. A35. 
  53. ^ Allen, C.; Herrera, M. A. The galactic orbits of nearby UV Ceti stars. Revista Mexicana de Astronomía y Astrofísica. 1998, 34: 37–46. Bibcode:1998RMxAA..34...37A. 
  54. ^ Anosova, J.; Orlov, V. V.; Pavlova, N. A. Dynamics of nearby multiple stars. The α Centauri system. Astronomy and Astrophysics. 1994, 292 (1): 115–118. Bibcode:1994A&A...292..115A. 
  55. ^ 55.0 55.1 55.2 55.3 55.4 Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; Berdiñas, Zaira M.; Butler, R. Paul; Coleman, Gavin A. L.; de la Cueva, Ignacio; Dreizler, Stefan; Endl, Michael; Giesers, Benjamin; Jeffers, Sandra V.; Jenkins, James S.; Jones, Hugh R. A.; Kiraga, Marcin; Kürster, Martin; López-González, María J.; Marvin, Christopher J.; Morales, Nicolás; Morin, Julien; Nelson, Richard P.; Ortiz, José L.; Ofir, Aviv; Paardekooper, Sijme-Jan; Reiners, Ansgar; Rodríguez, Eloy; Rodríguez-López, Cristina; Sarmiento, Luis F.; Strachan, John P.; Tsapras, Yiannis; Tuomi, Mikko; Zechmeister, Mathias. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature. 2016, 536 (7617): 437–440 [2023-05-20]. Bibcode:2016Natur.536..437A. PMID 27558064. S2CID 4451513. arXiv:1609.03449 . doi:10.1038/nature19106. (原始內容存檔於2021-10-03). 
  56. ^ Li, Yiting; Stefansson, Gudmundur; Robertson, Paul; Monson, Andrew; Cañas, Caleb; Mahadevan, Suvrath. A Candidate Transit Event around Proxima Centauri. Research Notes of the AAS. 2017-12-14, 1 (1). 49. Bibcode:2017RNAAS...1...49L. S2CID 119034883. arXiv:1712.04483 . doi:10.3847/2515-5172/aaa0d5. 
  57. ^ Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem; Giacobbe, Paolo; Sozzetti, Alessandro; Morbidelli, Alessandro; Pojmanski, Grzegorz; Barbato, Domenico; Butler, R. Paul; Jones, Hugh R. A.; Hambsch, Franz-Josef; Jenkins, James S.; López-González, María José; Morales, Nicolás; Peña Rojas, Pablo A.; Rodríguez-López, Cristina; Rodríguez, Eloy; Amado, Pedro J.; Anglada, Guillem; Feng, Fabo; Gómez, Jose F. A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU. Science Advances. 2020-01-15, 6 (3). eaax7467. Bibcode:2020SciA....6.7467D. PMC 6962037 . PMID 31998838. doi:10.1126/sciadv.aax7467. 
  58. ^ Kervella, Pierre; Arenou, Frédéric; Schneider, Jean. Orbital inclination and mass of the exoplanet candidate Proxima c. Astronomy & Astrophysics. 2020, 635: L14. Bibcode:2020A&A...635L..14K. ISSN 0004-6361. S2CID 214713486. arXiv:2003.13106 . doi:10.1051/0004-6361/202037551. 
  59. ^ 59.0 59.1 Suárez Mascareño, A.; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; González Hernández, J. I.; Rebolo, R.; Cristiano, S.; Pepe, F.; Santos, N. C.; Zapatero Osorio, M. R.; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas, F.; Abreu, M. Revisiting Proxima with ESPRESSO. Astronomy & Astrophysics. 2020, 639: A77. Bibcode:2020A&A...639A..77S. ISSN 0004-6361. arXiv:2005.12114 . doi:10.1051/0004-6361/202037745 . 
  60. ^ Benedict, G. Fritz; McArthur, Barbara E. A Moving Target—Revising the Mass of Proxima Centauri c. Research Notes of the AAS. 2020-06-16, 4 (6): 86. Bibcode:2020RNAAS...4...86B. S2CID 225798015. doi:10.3847/2515-5172/ab9ca9. 
  61. ^ 61.0 61.1 Faria, J. P.; Suárez Mascareño, A.; Figueira, P.; Silva, A. M.; Damasso, M.; Demangeon, O.; Pepe, F.; Santos, N. C.; Rebolo, R.; Cristiani, S.; Adibekyan, V.; Alibert, Y.; Allart, R.; Barros, S. C. C.; Cabral, A.; D』Odorico, V.; Di Marcantonio, P.; Dumusque, X.; Ehrenreich, D.; González Hernández, J. I.; Hara, N.; Lillo-Box, J.; Lo Curto, G.; Lovis, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, N. J.; Pallé, E.; Poretti, E.; Sousa, S. G.; Sozzetti, A.; Tabernero, H.; Udry, S.; Zapatero Osorio, M. R. A candidate short-period sub-Earth orbiting Proxima Centauri (PDF). Astronomy & Astrophysics (EDP Sciences). 2022, 658: A115 [2023-05-20]. Bibcode:2022A&A...658A.115F. arXiv:2202.05188 . doi:10.1051/0004-6361/202142337 . (原始內容存檔 (PDF)於2022-02-10). 
  62. ^ Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry. The Astronomical Journal. 2022-06-23, 164:84 (3): 18pp (August 8, 2022). Bibcode:2022AJ....164...84A. arXiv:2207.13524 . doi:10.3847/1538-3881/ac7ce6 . 
  63. ^ Proxima Centauri c. Extrasolar Planets Encyclopaedia. [2022-07-30]. (原始內容存檔於2020-09-19). 
  64. ^ Benedict, G. Fritz; Chappell, D. W.; Nelan, E.; Jefferys, W. H.; Van Altena, W.; Lee, J.; Cornell, D.; Shelus, P. J. Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: detection limits for substellar companions. The Astronomical Journal. 1999, 118 (2): 1086–1100. Bibcode:1999AJ....118.1086B. S2CID 18099356. arXiv:astro-ph/9905318 . doi:10.1086/300975. 
  65. ^ Kürster, M.; Hatzes, A. P.; Cochran, W. D.; Döbereiner, S.; Dennerl, K.; Endl, M. Precise radial velocities of Proxima Centauri. Strong constraints on a substellar companion. Astronomy & Astrophysics Letters. 1999, 344: L5–L8. Bibcode:1999A&A...344L...5K. arXiv:astro-ph/9903010 . 
  66. ^ Saar, Steven H.; Donahue, Robert A. Activity-related Radial Velocity Variation in Cool Stars (PDF). Astrophysical Journal. 1997, 485 (1): 319–326. Bibcode:1997ApJ...485..319S. S2CID 17628232. doi:10.1086/304392. (原始內容 (PDF)存檔於2019-03-09). 
  67. ^ Schultz, A. B.; Hart, H. M.; Hershey, J. L.; Hamilton, F. C.; Kochte, M.; Bruhweiler, F. C.; Benedict, G. F.; Caldwell, John; Cunningham, C.; Wu, Nailong; Franz, O. G.; Keyes, C. D.; Brandt, J. C. A possible companion to Proxima Centauri. Astronomical Journal. 1998, 115 (1): 345–350. Bibcode:1998AJ....115..345S. S2CID 120356725. doi:10.1086/300176. 
  68. ^ Schroeder, Daniel J.; Golimowski, David A.; Brukardt, Ryan A.; Burrows, Christopher J.; Caldwell, John J.; Fastie, William G.; Ford, Holland C.; Hesman, Brigette; Kletskin, Ilona; Krist, John E.; Royle, Patricia; Zubrowski, Richard. A. A Search for Faint Companions to Nearby Stars Using the Wide Field Planetary Camera 2. The Astronomical Journal. 2000, 119 (2): 906–922. Bibcode:2000AJ....119..906S. doi:10.1086/301227 . 
  69. ^ Lurie, John C.; Henry, Todd J.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Ianna, Philip A.; Koerner, David W.; Riedel, Adric R.; Subasavage, John P. The Solar Neighborhood. XXXIV. a Search for Planets Orbiting Nearby M Dwarfs Using Astrometry. The Astronomical Journal. November 2014, 148 (5): 12. Bibcode:2014AJ....148...91L. S2CID 118492541. arXiv:1407.4820 . doi:10.1088/0004-6256/148/5/91. 91. 
  70. ^ Anglada, Guillem; Amado, Pedro J; Ortiz, Jose L; Gómez, José F; Macías, Enrique; Alberdi, Antxon; Osorio, Mayra; Gómez, José L; de Gregorio-Monsalvo, Itziar; Pérez-Torres, Miguel A; Anglada-Escudé, Guillem; Berdiñas, Zaira M; Jenkins, James S; Jimenez-Serra, Izaskun; Lara, Luisa M; López-González, Maria J; López-Puertas, Manuel; Morales, Nicolas; Ribas, Ignasi; Richards, Anita M. S; Rodríguez-López, Cristina; Rodriguez, Eloy. ALMA Discovery of Dust Belts Around Proxima Centauri. The Astrophysical Journal. 2017, 850 (1): L6 [2023-05-20]. Bibcode:2017ApJ...850L...6A. S2CID 13431834. arXiv:1711.00578 . doi:10.3847/2041-8213/aa978b. (原始內容存檔於2022-05-25). 
  71. ^ Proxima Centauri's no good, very bad day. Science Daily. 2018-02-26 [2018-03-01]. (原始內容存檔於2022-09-12). 
  72. ^ MacGregor, Meredith A.; Weinberger, Alycia J.; Wilner, David J.; Kowalski, Adam F.; Cranmer, Steven R. Detection of a Millimeter Flare From Proxima Centauri. Astrophysical Journal Letters. 2018, 855 (1): L2. Bibcode:2018ApJ...855L...2M. S2CID 119287614. arXiv:1802.08257 . doi:10.3847/2041-8213/aaad6b. 
  73. ^ Bixel, A.; Apai, D. Probabilistic Constraints on the Mass and Composition of Proxima b. The Astrophysical Journal Letters. 2017-02-21, 836 (2): L31. Bibcode:2017ApJ...836L..31W. ISSN 2041-8205. S2CID 119469149. arXiv:1702.02542 . doi:10.3847/2041-8213/aa5f51. hdl:10150/623234. 
  74. ^ Chang, Kenneth. One star over, a planet that might be another Earth. New York Times. 2016-08-24 [2016-08-24]. (原始內容存檔於2019-06-26). 
  75. ^ Knapton, Sarah. Proxima b: Alien life could exist on 'second Earth' found orbiting our nearest star in Alpha Centauri system . The Telegraph (Telegraph Media Group). 2016-08-24 [2016-08-24]. (原始內容存檔於2022-01-12). 
  76. ^ Proxima b is our neighbor ... better get used to it!. Pale Red Dot. 2016-08-24 [2016-08-24]. (原始內容存檔於2020-05-13). 
  77. ^ Aron, Jacob. August 24, 2016. Proxima b: Closest Earth-like planet discovered right next door頁面存檔備份,存於互聯網檔案館). New Scientist. Retrieved August 24, 2016.
  78. ^ Follow a Live Planet Hunt!. European Southern Observatory. 2016-01-15 [2016-08-24]. (原始內容存檔於2019-06-09). 
  79. ^ Feltman, Rachel. Scientists say they've found a planet orbiting Proxima Centauri, our closest neighbor. The Washington Post. 2016-08-24 [2023-05-22]. (原始內容存檔於2016-09-07). 
  80. ^ Mathewson, Samantha. Proxima b By the Numbers: Possibly Earth-Like World at the Next Star Over. Space.com. 2016-08-24 [2016-08-25]. (原始內容存檔於2019-10-01). 
  81. ^ Witze, Alexandra. Earth-sized planet around nearby star is astronomy dream come true. Nature. 2016-08-24, 536 (7617): 381–382. Bibcode:2016Natur.536..381W. PMID 27558041. doi:10.1038/nature.2016.20445 . 
  82. ^ Liu, Hui-Gen; Jiang, Peng; Huang, Xingxing; Yu, Zhou-Yi; Yang, Ming; Jia, Minghao; Awiphan, Supachai; Pan, Xiang; Liu, Bo; Zhang, Hongfei; Wang, Jian; Li, Zhengyang; Du, Fujia; Li, Xiaoyan; Lu, Haiping; Zhang, Zhiyong; Tian, Qi-Guo; Li, Bin; Ji, Tuo; Zhang, Shaohua; Shi, Xiheng; Wang, Ji; Zhou, Ji-Lin; Zhou, Hongyan. Searching for the Transit of the Earth-mass Exoplanet Proxima Centauri b in Antarctica: Preliminary Result. The Astronomical Journal. January 2018, 155 (1): 10. Bibcode:2018AJ....155...12L. S2CID 54773928. arXiv:1711.07018 . doi:10.3847/1538-3881/aa9b86. 12. 
  83. ^ 83.0 83.1 Billings, Lee. A Second Planet May Orbit Earth's Nearest Neighboring Star. Scientific American. 2019-04-12 [2019-04-12]. (原始內容存檔於2021-01-20). 
  84. ^ 84.0 84.1 84.2 Wall, Mike. Possible 2nd Planet Spotted Around Proxima Centauri. Space.com. 2019-04-12 [2019-04-12]. (原始內容存檔於2023-03-23). 
  85. ^ Benedict, Fritz. Texas Astronomer Uses 25-year-old Hubble Data to Confirm Planet Proxima Centauri c. McDonald Observatory. University of Texas. 2020-06-02 [2023-05-22]. (原始內容存檔於2020-06-07). 
  86. ^ Gratton, R.; Zurlo, A.; Le Coroller, H.; Damasso, M.; Del Sordo, F.; Langlois, M.; Mesa, D.; Milli, J.; Chauvin, G.; Desidera, S.; Hagelberg, J.; Lagadec, E.; Vigan, A.; Boccaletti, A.; Bonnefoy, M.; Brandner, W.; Brown, S.; Cantalloube, F.; Delorme, P.; D'Orazi, V.; Feldt, M.; Galicher, R.; Henning, T.; Janson, M.; Kervella, P.; Lagrange, A. -M.; Lazzoni, C.; Ligi, R.; Maire, A. -L.; Ménard, F.; Meyer, M.; Mugnier, L.; Potier, A.; Rickman, E. L.; Rodet, L.; Romero, C.; Schmidt, T.; Sissa, E.; Sozzetti, A.; Szulágyi, J.; Wahhaj, Z.; Antichi, J.; Fusco, T.; Stadler, E.; Suarez, M.; Wildi, F. Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT. Astronomy & Astrophysics. June 2020, 638: A120. Bibcode:2020A&A...638A.120G. S2CID 215754278. arXiv:2004.06685 . doi:10.1051/0004-6361/202037594. 
  87. ^ Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry. The Astronomical Journal. 2022-06-23, 164:84 (3): 18pp (August 8, 2022). Bibcode:2022AJ....164...84A. arXiv:2207.13524 . doi:10.3847/1538-3881/ac7ce6 . 
  88. ^ Endl, M.; Kuerster, M.; Rouesnel, F.; Els, S.; Hatzes, A. P.; Cochran, W. D. Deming, Drake , 編. Extrasolar terrestrial planets: can we detect them already?. Conference Proceedings, Scientific Frontiers in Research on Extrasolar Planets (Washington, DC). June 18–21, 2002: 75–79. Bibcode:2003ASPC..294...75E. arXiv:astro-ph/0208462 . 
  89. ^ Tarter, Jill C.; Mancinelli, Rocco L.; Aurnou, Jonathan M.; Backman, Dana E.; Basri, Gibor S.; Boss, Alan P.; Clarke, Andrew; Deming, Drake. A reappraisal of the habitability of planets around M dwarf stars. Astrobiology. 2007, 7 (1): 30–65. Bibcode:2007AsBio...7...30T. PMID 17407403. S2CID 10932355. arXiv:astro-ph/0609799 . doi:10.1089/ast.2006.0124. 
  90. ^ Alpert, Mark. Red star rising. Scientific American. November 2005, 293 (5): 28. Bibcode:2005SciAm.293e..28A. PMID 16318021. doi:10.1038/scientificamerican1105-28. 
  91. ^ Ward, Peter D.; Brownlee, Donald. Rare Earth: why complex life is uncommon in the universe. Springer Publishing. 2000. ISBN 978-0-387-98701-9. 
  92. ^ Khodachenko, Maxim L.; Lammer, Helmut; Grießmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K. Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of earth-like exoplanets in close-in habitable zones. Astrobiology. 2007, 7 (1): 167–184. Bibcode:2007AsBio...7..167K. PMID 17407406. doi:10.1089/ast.2006.0127. 
  93. ^ O'Callaghan, Jonathan. Alien Hunters Discover Mysterious Radio Signal from Proxima Centauri. Scientific American. 2020-12-18 [2020-12-19]. (原始內容存檔於2020-12-19) (英語). 
  94. ^ Witze, Alexandra. Mysterious 'alien beacon' was false alarm. Nature. 2021-10-25, 599 (7883): 20–21. Bibcode:2021Natur.599...20W. PMID 34697482. S2CID 239887089. doi:10.1038/d41586-021-02931-7 . 
  95. ^ Innes, R. T. A. A Faint Star of Large Proper Motion. Circular of the Union Observatory Johannesburg. October 1915, 30: 235–236. Bibcode:1915CiUO...30..235I.  This is the original Proxima Centauri discovery paper.
  96. ^ 96.0 96.1 Glass, I. S. The discovery of the nearest star. African Skies. July 2007, 11: 39. Bibcode:2007AfrSk..11...39G. 
  97. ^ Queloz, Didier. How Small are Small Stars Really?. European Southern Observatory. 2002-11-29 [2018-01-29]. eso0232; PR 22/02. (原始內容存檔於2022-09-04). 
  98. ^ 98.0 98.1 Alden, Harold L. Alpha and Proxima Centauri. Astronomical Journal. 1928, 39 (913): 20–23. Bibcode:1928AJ.....39...20A. doi:10.1086/104871. 
  99. ^ Innes, R. T. A. Parallax of the Faint Proper Motion Star Near Alpha of Centaurus. 1900. R.A. 14h22m55s.-0s 6t. Dec-62° 15'2 0'8 t. Circular of the Union Observatory Johannesburg. September 1917, 40: 331–336. Bibcode:1917CiUO...40..331I. 
  100. ^ Voûte, J. A 13th magnitude star in Centaurus with the same parallax as α Centauri. Monthly Notices of the Royal Astronomical Society. 1917, 77 (9): 650–651 [2023-05-23]. Bibcode:1917MNRAS..77..650V. doi:10.1093/mnras/77.9.650 . (原始內容存檔於2022-03-19). 
  101. ^ Shapley, Harlow. Proxima Centauri as a flare star. Proceedings of the National Academy of Sciences of the United States of America. 1951, 37 (1): 15–18. Bibcode:1951PNAS...37...15S. PMC 1063292 . PMID 16588985. doi:10.1073/pnas.37.1.15 . 
  102. ^ Kroupa, Pavel; Burman, R. R.; Blair, D. G. Photometric observations of flares on Proxima Centauri. PASA. 1989, 8 (2): 119–122. Bibcode:1989PASAu...8..119K. S2CID 117977034. doi:10.1017/S1323358000023122. 
  103. ^ Haisch, Bernhard; Antunes, A.; Schmitt, J. H. M. M. Solar-like M-class X-ray flares on Proxima Centauri observed by the ASCA satellite. Science. 1995, 268 (5215): 1327–1329. Bibcode:1995Sci...268.1327H. PMID 17778978. S2CID 46660210. doi:10.1126/science.268.5215.1327. 
  104. ^ Sherrod, P. Clay; Koed, Thomas L. A complete manual of amateur astronomy: tools and techniques for astronomical observations. Courier Dover Publications. 2003. ISBN 978-0-486-42820-8. 
  105. ^ IAU Working Group on Star Names (WGSN). International Astronomical Union. [2016-05-22]. (原始內容存檔於2019-03-30). 
  106. ^ Naming Stars. International Astronomical Union. [2018-03-03]. (原始內容存檔於2020-04-11). 
  107. ^ Seeing Stars in 3D: The New Horizons Parallax Program. pluto.jhuapl.edu. Johns Hopkins University Applied Physics Laboratory. 2020-01-29 [2020-05-25]. (原始內容存檔於2023-04-03). 
  108. ^ Parallax measurements for Wolf 359 and Proxima Centauri. German Aerospace Center. [2021-01-19]. (原始內容存檔於2023-03-27). 
  109. ^ Gilster, Paul. Centauri dreams: imagining and planning. Springer. 2004. ISBN 978-0-387-00436-5. 
  110. ^ Crawford, I. A. Interstellar Travel: A Review for Astronomers. Quarterly Journal of the Royal Astronomical Society. September 1990, 31: 377–400. Bibcode:1990QJRAS..31..377C. 
  111. ^ Peat, Chris. Spacecraft escaping the Solar System. Heavens Above. [2016-12-25]. (原始內容存檔於2018-05-11). 
  112. ^ 112.0 112.1 Beals, K. A.; Beaulieu, M.; Dembia, F. J.; Kerstiens, J.; Kramer, D. L.; West, J. R.; Zito, J. A. Project Longshot, an Unmanned Probe to Alpha Centauri (PDF). NASA-CR-184718. U. S. Naval Academy. 1988 [2008-06-13]. (原始內容存檔 (PDF)於2013-12-19). 
  113. ^ Merali, Zeeya. Shooting for a star. Science. 2016-05-27, 352 (6289): 1040–1041. PMID 27230357. doi:10.1126/science.352.6289.1040. 
  114. ^ Popkin, Gabriel. What it would take to reach the stars. Nature. 2017-02-02, 542 (7639): 20–22. Bibcode:2017Natur.542...20P. PMID 28150784. doi:10.1038/542020a . 

延伸閱讀

外部連結