鐵木辛柯梁 是20世紀早期由美籍俄裔科學家與工程師斯蒂芬·鐵木辛柯 提出並發展的力學模型。[ 1] [ 2] 模型考慮了剪應力 和轉動慣性 ,使其適於描述短梁、層合梁以及波長 接近厚度的高頻 激勵時梁的表現。結果方程有4階,但不同於一般的梁理論,如歐拉-伯努利梁理論 ,還有一個2階空間導數呈現。實際上,考慮了附加的變形機理有效地降低了梁的剛度 ,結果在一穩態載荷下撓度 更大,在一組給定的邊界條件時預估固有頻率 更低。後者在高頻即波長更短時效果更明顯,反向剪力距離縮短時也有同樣效果。
鐵木辛柯梁(藍)的變形與歐拉-伯努利梁(紅)的對比
如果梁材料的剪切模量 接近無窮,即此時梁為剪切剛體 ,並且忽略轉動慣性,則鐵木辛柯梁理論趨同於一般梁理論。
控制方程
准靜態鐵木辛柯梁
鐵木辛柯梁的變形。
θ
x
=
φ
(
x
)
{\displaystyle \theta _{x}=\varphi (x)}
不等於
d
w
/
d
x
{\displaystyle dw/dx}
。
在靜力學 中鐵木辛柯梁理論沒有軸向影響,假定梁的位移服從於
u
x
(
x
,
y
,
z
)
=
−
z
φ
(
x
)
;
u
y
(
x
,
y
,
z
)
=
0
;
u
z
(
x
,
y
)
=
w
(
x
)
{\displaystyle u_{x}(x,y,z)=-z~\varphi (x)~;~~u_{y}(x,y,z)=0~;~~u_{z}(x,y)=w(x)}
式中
(
x
,
y
,
z
)
{\displaystyle (x,y,z)}
是樑上一點的坐標,
u
x
,
u
y
,
u
z
{\displaystyle u_{x},u_{y},u_{z}}
是位移向量的三維坐標分量,
φ
{\displaystyle \varphi }
是對於梁的中性面的法向轉角,
w
{\displaystyle w}
是中性面的在
z
{\displaystyle z}
方向的位移。
控制方程是以下常微分方程 的解耦系統:
d
2
d
x
2
(
E
I
d
φ
d
x
)
=
q
(
x
,
t
)
d
w
d
x
=
φ
−
1
κ
A
G
d
d
x
(
E
I
d
φ
d
x
)
.
{\displaystyle {\begin{aligned}&{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}\left(EI{\frac {\mathrm {d} \varphi }{\mathrm {d} x}}\right)=q(x,t)\\&{\frac {\mathrm {d} w}{\mathrm {d} x}}=\varphi -{\frac {1}{\kappa AG}}{\frac {\mathrm {d} }{\mathrm {d} x}}\left(EI{\frac {\mathrm {d} \varphi }{\mathrm {d} x}}\right).\end{aligned}}}
靜態條件下的鐵木辛柯梁理論,若在以下條件成立時,等同於歐拉-伯努利梁理論
E
I
κ
L
2
A
G
≪
1
{\displaystyle {\frac {EI}{\kappa L^{2}AG}}\ll 1}
此時,可忽略上面控制方程的最後一項,得到有效的近似,式中
L
{\displaystyle L}
是梁的長度。
對於等截面均勻梁,合併以上兩個方程,
E
I
d
4
w
d
x
4
=
q
(
x
)
−
E
I
κ
A
G
d
2
q
d
x
2
{\displaystyle EI~{\cfrac {\mathrm {d} ^{4}w}{\mathrm {d} x^{4}}}=q(x)-{\cfrac {EI}{\kappa AG}}~{\cfrac {\mathrm {d} ^{2}q}{\mathrm {d} x^{2}}}}
動態鐵木辛柯梁
在鐵木辛柯梁理論中若不考慮軸向影響,則給出梁的位移
u
x
(
x
,
y
,
z
,
t
)
=
−
z
φ
(
x
,
t
)
;
u
y
(
x
,
y
,
z
,
t
)
=
0
;
u
z
(
x
,
y
,
z
,
t
)
=
w
(
x
,
t
)
{\displaystyle u_{x}(x,y,z,t)=-z~\varphi (x,t)~;~~u_{y}(x,y,z,t)=0~;~~u_{z}(x,y,z,t)=w(x,t)}
式中
(
x
,
y
,
z
)
{\displaystyle (x,y,z)}
是梁內一點的坐標,
u
x
,
u
y
,
u
z
{\displaystyle u_{x},u_{y},u_{z}}
是位移向量的三維坐標分量,
φ
{\displaystyle \varphi }
是對於梁的中性面的法向轉角,
w
{\displaystyle w}
是中性面
z
{\displaystyle z}
方向的位移.
從以上假設,鐵木辛柯梁,考慮到振動,要用線性耦合偏微分方程 描述:[ 3]
ρ
A
∂
2
w
∂
t
2
−
q
(
x
,
t
)
=
∂
∂
x
[
κ
A
G
(
∂
w
∂
x
−
φ
)
]
{\displaystyle \rho A{\frac {\partial ^{2}w}{\partial t^{2}}}-q(x,t)={\frac {\partial }{\partial x}}\left[\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\right]}
ρ
I
∂
2
φ
∂
t
2
=
∂
∂
x
(
E
I
∂
φ
∂
x
)
+
κ
A
G
(
∂
w
∂
x
−
φ
)
{\displaystyle \rho I{\frac {\partial ^{2}\varphi }{\partial t^{2}}}={\frac {\partial }{\partial x}}\left(EI{\frac {\partial \varphi }{\partial x}}\right)+\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)}
其中因變量是梁的平移位移
w
(
x
,
t
)
{\displaystyle w(x,t)}
和轉角位移
φ
(
x
,
t
)
{\displaystyle \varphi (x,t)}
。注意不同於歐拉-伯努利梁理論,轉角位移是另一個變量而非撓度斜率的近似。此外,
ρ
{\displaystyle \rho }
是梁材料的密度 (而非線密度 );
A
{\displaystyle A}
是截面面積;
E
{\displaystyle E}
是彈性模量 ;
G
{\displaystyle G}
是剪切模量 ;
I
{\displaystyle I}
是軸慣性矩 ;
κ
{\displaystyle \kappa }
,稱作鐵木辛柯剪切係數,由形狀確定,通常矩形截面
κ
=
5
/
6
{\displaystyle \kappa =5/6}
;
q
(
x
,
t
)
{\displaystyle q(x,t)}
是載荷分佈(單位長度上的力);
m
:=
ρ
A
{\displaystyle m:=\rho A}
J
:=
ρ
I
{\displaystyle J:=\rho I}
這些參數不一定是常數。
對於各向同性的線彈性均勻等截面梁,以上兩個方程可合併成[ 4] [ 5]
E
I
∂
4
w
∂
x
4
+
m
∂
2
w
∂
t
2
−
(
J
+
E
I
m
k
A
G
)
∂
4
w
∂
x
2
∂
t
2
+
m
J
k
A
G
∂
4
w
∂
t
4
=
q
(
x
,
t
)
+
J
k
A
G
∂
2
q
∂
t
2
−
E
I
k
A
G
∂
2
q
∂
x
2
{\displaystyle EI~{\cfrac {\partial ^{4}w}{\partial x^{4}}}+m~{\cfrac {\partial ^{2}w}{\partial t^{2}}}-\left(J+{\cfrac {EIm}{kAG}}\right){\cfrac {\partial ^{4}w}{\partial x^{2}~\partial t^{2}}}+{\cfrac {mJ}{kAG}}~{\cfrac {\partial ^{4}w}{\partial t^{4}}}=q(x,t)+{\cfrac {J}{kAG}}~{\cfrac {\partial ^{2}q}{\partial t^{2}}}-{\cfrac {EI}{kAG}}~{\cfrac {\partial ^{2}q}{\partial x^{2}}}}
軸向影響
如果梁的位移由下式給出
u
x
(
x
,
y
,
z
,
t
)
=
u
0
(
x
,
t
)
−
z
φ
(
x
,
t
)
;
u
y
(
x
,
y
,
z
,
t
)
=
0
;
u
z
(
x
,
y
,
z
)
=
w
(
x
,
t
)
{\displaystyle u_{x}(x,y,z,t)=u_{0}(x,t)-z~\varphi (x,t)~;~~u_{y}(x,y,z,t)=0~;~~u_{z}(x,y,z)=w(x,t)}
其中
u
0
{\displaystyle u_{0}}
是
x
{\displaystyle x}
方向的附加位移,則鐵木辛柯梁的控制方程成為
m
∂
2
w
∂
t
2
=
∂
∂
x
[
κ
A
G
(
∂
w
∂
x
−
φ
)
]
+
q
(
x
,
t
)
J
∂
2
φ
∂
t
2
=
N
(
x
,
t
)
∂
w
∂
x
+
∂
∂
x
(
E
I
∂
φ
∂
x
)
+
κ
A
G
(
∂
w
∂
x
−
φ
)
{\displaystyle {\begin{aligned}m{\frac {\partial ^{2}w}{\partial t^{2}}}&={\frac {\partial }{\partial x}}\left[\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\right]+q(x,t)\\J{\frac {\partial ^{2}\varphi }{\partial t^{2}}}&=N(x,t)~{\frac {\partial w}{\partial x}}+{\frac {\partial }{\partial x}}\left(EI{\frac {\partial \varphi }{\partial x}}\right)+\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\end{aligned}}}
其中
J
=
ρ
I
{\displaystyle J=\rho I}
,
N
(
x
,
t
)
{\displaystyle N(x,t)}
是外加軸向力。任意外部軸向力的平衡依靠應力
N
x
x
(
x
,
t
)
=
∫
−
h
h
σ
x
x
d
z
{\displaystyle N_{xx}(x,t)=\int _{-h}^{h}\sigma _{xx}~dz}
式中
σ
x
x
{\displaystyle \sigma _{xx}}
是軸向應力,梁的厚度設為
2
h
{\displaystyle 2h}
。
包含軸向力的梁方程合併為
E
I
∂
4
w
∂
x
4
+
N
∂
2
w
∂
x
2
+
m
∂
2
w
∂
t
2
−
(
J
+
m
E
I
κ
A
G
)
∂
4
w
∂
x
2
∂
t
2
+
m
J
κ
A
G
∂
4
w
∂
t
4
=
q
+
J
κ
A
G
∂
2
q
∂
t
2
−
E
I
κ
A
G
∂
2
q
∂
x
2
{\displaystyle EI~{\cfrac {\partial ^{4}w}{\partial x^{4}}}+N~{\cfrac {\partial ^{2}w}{\partial x^{2}}}+m~{\frac {\partial ^{2}w}{\partial t^{2}}}-\left(J+{\cfrac {mEI}{\kappa AG}}\right)~{\cfrac {\partial ^{4}w}{\partial x^{2}\partial t^{2}}}+{\cfrac {mJ}{\kappa AG}}~{\cfrac {\partial ^{4}w}{\partial t^{4}}}=q+{\cfrac {J}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial t^{2}}}-{\cfrac {EI}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial x^{2}}}}
阻尼
如果,除軸向力外,我們考慮與速度成正比的阻尼力,形如
η
(
x
)
∂
w
∂
t
{\displaystyle \eta (x)~{\cfrac {\partial w}{\partial t}}}
鐵木辛柯梁的耦合控制方程成為
m
∂
2
w
∂
t
2
+
η
(
x
)
∂
w
∂
t
=
∂
∂
x
[
κ
A
G
(
∂
w
∂
x
−
φ
)
]
+
q
(
x
,
t
)
{\displaystyle m{\frac {\partial ^{2}w}{\partial t^{2}}}+\eta (x)~{\cfrac {\partial w}{\partial t}}={\frac {\partial }{\partial x}}\left[\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)\right]+q(x,t)}
J
∂
2
φ
∂
t
2
=
N
∂
w
∂
x
+
∂
∂
x
(
E
I
∂
φ
∂
x
)
+
κ
A
G
(
∂
w
∂
x
−
φ
)
{\displaystyle J{\frac {\partial ^{2}\varphi }{\partial t^{2}}}=N{\frac {\partial w}{\partial x}}+{\frac {\partial }{\partial x}}\left(EI{\frac {\partial \varphi }{\partial x}}\right)+\kappa AG\left({\frac {\partial w}{\partial x}}-\varphi \right)}
合併方程為
E
I
∂
4
w
∂
x
4
+
N
∂
2
w
∂
x
2
+
m
∂
2
w
∂
t
2
−
(
J
+
m
E
I
κ
A
G
)
∂
4
w
∂
x
2
∂
t
2
+
m
J
κ
A
G
∂
4
w
∂
t
4
+
J
η
(
x
)
κ
A
G
∂
3
w
∂
t
3
−
E
I
κ
A
G
∂
2
∂
x
2
(
η
(
x
)
∂
w
∂
t
)
+
η
(
x
)
∂
w
∂
t
=
q
+
J
κ
A
G
∂
2
q
∂
t
2
−
E
I
κ
A
G
∂
2
q
∂
x
2
{\displaystyle {\begin{aligned}EI~{\cfrac {\partial ^{4}w}{\partial x^{4}}}&+N~{\cfrac {\partial ^{2}w}{\partial x^{2}}}+m~{\frac {\partial ^{2}w}{\partial t^{2}}}-\left(J+{\cfrac {mEI}{\kappa AG}}\right)~{\cfrac {\partial ^{4}w}{\partial x^{2}\partial t^{2}}}+{\cfrac {mJ}{\kappa AG}}~{\cfrac {\partial ^{4}w}{\partial t^{4}}}+{\cfrac {J\eta (x)}{\kappa AG}}~{\cfrac {\partial ^{3}w}{\partial t^{3}}}\\&-{\cfrac {EI}{\kappa AG}}~{\cfrac {\partial ^{2}}{\partial x^{2}}}\left(\eta (x){\cfrac {\partial w}{\partial t}}\right)+\eta (x){\cfrac {\partial w}{\partial t}}=q+{\cfrac {J}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial t^{2}}}-{\cfrac {EI}{\kappa AG}}~{\frac {\partial ^{2}q}{\partial x^{2}}}\end{aligned}}}
切變係數
確定切變係數不是直接的,一般它必須滿足:
∫
A
τ
d
A
=
κ
A
G
φ
{\displaystyle \int _{A}\tau dA=\kappa AG\varphi \,}
切變係數由泊松比 確定。更嚴格的表達方法由多位科學家完成,包括斯蒂芬·鐵木辛柯 、雷蒙德·明德林(Raymond D. Mindlin)、考珀(G. R. Cowper)和約翰·哈欽森(John W. Hutchinson)等。工程實踐中,斯蒂芬·鐵木辛柯的表達一般狀況下足夠好。[ 6]
對於固態矩形截面:
κ
=
10
(
1
+
ν
)
12
+
11
ν
{\displaystyle \kappa ={\cfrac {10(1+\nu )}{12+11\nu }}}
對於固態圓形截面:
κ
=
6
(
1
+
ν
)
7
+
6
ν
{\displaystyle \kappa ={\cfrac {6(1+\nu )}{7+6\nu }}}
參考文獻
^ Timoshenko, S. P., 1921, On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section , Philosophical Magazine, p. 744.
^ Timoshenko, S. P., 1922, On the transverse vibrations of bars of uniform cross-section , Philosophical Magazine, p. 125.
^ Timoshenko's Beam Equations . [2013-03-22 ] . (原始內容存檔 於2007-10-15).
^ Thomson, W. T., 1981, Theory of Vibration with Applications
^ Rosinger, H. E. and Ritchie, I. G., 1977, On Timoshenko's correction for shear in vibrating isotropic beams, J. Phys. D: Appl. Phys., vol. 10, pp. 1461-1466.
^ Stephen Timoshenko, James M. Gere. Mechanics of Materials. Van Nostrand Reinhold Co., 1972. Pages 207.
Stephen P. Timoshenko. Schwingungsprobleme der technik. Verlag von Julius Springer. 1932.