3T3-L1細胞系衍生自小鼠胚胎來源的NIH 3T3細胞系,有着成纖維細胞樣的形態,但在特定條件下,這些細胞會分化脂肪細胞樣的表型。3T3-L1細胞對脂溶性激素和藥物敏感,包括腎上腺素異丙腎上腺素英語Isoprenaline胰島素[1]。3T3-L1細胞常用於脂肪組織的相關研究,其分化而來的脂肪樣細胞是脂肪細胞生物學研究中最常用的一個體外模型[2]

成脂過程

3T3-L1前體脂肪細胞作為一種具定向分化潛能的小鼠胚胎成纖維細胞,在誘導劑的作用下就會激活脂肪細胞分化信號通路[3][4],繼而啓動三酸甘油酯的合成與脂滴積累,並且在外觀上更接近脂肪細胞,從多邊形逐漸變成近圓形或圓形,細胞內出現大小不等的脂滴,充滿着細胞的大部分胞體。這個過程中涉及多種轉錄因子 (如PPARγ[5]脂聯素[6]增強子結合蛋白α英語CCAAT-enhancer-binding proteins[7]等)、細胞週期蛋白及脂肪合成相關基因的表達調控,以及活性的轉變。倘若有關細胞再經由胰島素、地塞米松 (Dex) 和3-異丁基-1-甲基黃嘌呤英語IBMX (IBMX) 共同處理的經典雞尾酒法的步驟後[8][9],就可以分化為成熟的白色脂肪細胞,然而此方式存在着誘導效率低且分化效果不理想的問題[10]。有研究指出,只要在經典雞尾酒誘導劑的基礎上適量加用單一過氧化物酶體增生因子活化γ型受體 (PPARγ) 激動劑[11],如羅格列酮,即可促進成脂過程,效果優於單一使用吲哚美辛等非類固醇類抗炎藥,惟兩者合用效果更佳。

參考文獻

  1. ^ Green H, Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975, 5 (1): 19–27. PMID 165899. doi:10.1016/0092-8674(75)90087-2. 
  2. ^ Morrison, S; McGee, SL. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages.. Adipocyte. NaN, 4 (4): 295–302 [2019-11-19]. PMID 26451286. doi:10.1080/21623945.2015.1040612. 
  3. ^ Chen, D; Wang, Y; Wu, K; Wang, X. Dual Effects of Metformin on Adipogenic Differentiation of 3T3-L1 Preadipocyte in AMPK-Dependent and Independent Manners.. International journal of molecular sciences. 2018-05-23, 19 (6) [2019-11-19]. PMID 29789508. doi:10.3390/ijms19061547. 
  4. ^ Chen, J; Liu, Y; Lu, S; Yin, L; Zong, C; Cui, S; Qin, D; Yang, Y; Guan, Q; Li, X; Wang, X. The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation.. International journal of obesity (2005). 2017-02, 41 (2): 299–308 [2019-11-19]. PMID 27780975. doi:10.1038/ijo.2016.189. 
  5. ^ Adaikalakoteswari, A; Vatish, M; Alam, MT; Ott, S; Kumar, S; Saravanan, P. Low Vitamin B12 in Pregnancy Is Associated With Adipose-Derived Circulating miRs Targeting PPARγ and Insulin Resistance.. The Journal of clinical endocrinology and metabolism. 2017-11-01, 102 (11): 4200–4209 [2019-11-19]. PMID 28938471. doi:10.1210/jc.2017-01155. 
  6. ^ Hu, E; Liang, P; Spiegelman, BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity.. The Journal of biological chemistry. 1996-05-03, 271 (18): 10697–703 [2019-11-19]. PMID 8631877. doi:10.1074/jbc.271.18.10697. 
  7. ^ Gregoire, FM; Smas, CM; Sul, HS. Understanding adipocyte differentiation.. Physiological reviews. 1998-07, 78 (3): 783–809 [2019-11-19]. PMID 9674695. doi:10.1152/physrev.1998.78.3.783. 
  8. ^ Tontonoz, P; Nagy, L; Alvarez, JG; Thomazy, VA; Evans, RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL.. Cell. 1998-04-17, 93 (2): 241–52 [2019-11-19]. PMID 9568716. doi:10.1016/s0092-8674(00)81575-5. 
  9. ^ Ying, W; Riopel, M; Bandyopadhyay, G; Dong, Y; Birmingham, A; Seo, JB; Ofrecio, JM; Wollam, J; Hernandez-Carretero, A; Fu, W; Li, P; Olefsky, JM. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity.. Cell. 2017-10-05, 171 (2): 372–384.e12 [2019-11-19]. PMID 28942920. doi:10.1016/j.cell.2017.08.035. 
  10. ^ Shen, L; Gan, M; Li, Q; Wang, J; Li, X; Zhang, S; Zhu, L. MicroRNA-200b regulates preadipocyte proliferation and differentiation by targeting KLF4.. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018-07, 103: 1538–1544 [2019-11-19]. PMID 29864940. doi:10.1016/j.biopha.2018.04.170. 
  11. ^ Peng, J; Li, Y; Wang, X; Deng, S; Holland, J; Yates, E; Chen, J; Gu, H; Essandoh, K; Mu, X; Wang, B; McNamara, RK; Peng, T; Jegga, AG; Liu, T; Nakamura, T; Huang, K; Perez-Tilve, D; Fan, GC. An Hsp20-FBXO4 Axis Regulates Adipocyte Function through Modulating PPARγ Ubiquitination.. Cell reports. 2018-06-19, 23 (12): 3607–3620 [2019-11-19]. PMID 29925002. doi:10.1016/j.celrep.2018.05.065. 

外部鏈接