整环(Integral domain),又译作整域,是抽象代数中的一个概念,指含乘法单位元的无零因子交换环。一般假设环中乘法单位元1不等于加法单位元0,以除去平凡的环。整环是整数环的抽象化,它很好地继承了整数环的整除性质,使得我们能够更好地研究整除理论。

整环也可以定义为理想是素理想的交换环,或交换的无零因子环。

形式定义

 是一个交换环,存在  (0为加法单位元),使得

 (存在乘法单位元)

并且对任意的 ,如果 ,那么或者 ,或者 。用数学方式表示为:

 (没有零因子)

就称其为整环[1]:19

定义中的无零因子性质也可以用环中乘法的消去律替代:如果 ,并且 ,那么 [2]:119。用数学方法表示就是:

 

例子

  • 整环的代表性例子是整数环  是一个交换环,并且乘法单位元1不等于加法单位0。最后,两个整数相乘等于0,则必然有其中一个等于0。
  • 多项式环是整环当且仅当其系数构成整环。比如整系数一元多项式环 和实系数二元多项式环 
  • 每个都是整环[2]:122。相对的,每个阿廷整环都是域。特别地,每个有限的整环都是有限域。整数环 就是一个非阿廷整环不是域的例子,因为它有无穷递降的理想列:
 
  • 对每个整数  是实数域 的子环,因此是整环。 是复数域 的子环,因此是整环。当 时,后者被称为高斯整数环
  •  是一个交换环,  的一个理想,那么商环 是整环当且仅当P素理想。由此可推出 是整环当且仅当 素理想

整除、素元、既约元

在整环上可以定义类似于整数环里的整除性质。

abR中的两个元素,定义a整除bab的约数或ba倍数,当且仅当存在R中的一个元素x使得ax = b

整除关系满足传递性,即a整除bb整除c推出a整除ca整除b,则a整除b的所有倍数。a的两个倍数的和与差仍是a的倍数。

1的约数称为R可逆元。可逆元整除所有元素。

a整除b并且b整除a,则称ab相伴ab相伴当且仅当存在可逆元u使得au = b

非可逆元q称为既约元,如果q不能写成两个非可逆元的乘积。

如果p不是零元或可逆元,且对任意a,b,如果p整除ab可推出p整除ap整除b,则称p素元

这两个定义是整数环中素数的推广。如果p是素元,那么p生成的主理想是素理想。每个素元都是既约元,但反过来则只有当R唯一分解环才正确。

参考资料

  1. ^ (法文)Jean Fresnel. Anneaux. Hermann. 2001. ISBN 2 7056 1447 8. 
  2. ^ 2.0 2.1 (英文)Joseph J. Rotman. Advanced Modern Algebra. American Mathematical Society. 2010年8月. ISBN 978-0821847411.