气候变化与渔业

气候变化与渔业(英语:Climate change and fisheries)所谈的是渔业因为海洋生态系统受到海洋温度上升、[2]海洋酸化[3]海洋低氧现象的影响,以及淡水生态系统则受到水温、水流和鱼类栖息地丧失的影响,所导致的结果。[4]这些影响因各地渔业的不同情况而异。[5]气候变化正改变鱼类的分布[6]以及海洋和淡水物种的生产力。气候变化预计将对鱼产品英语fish product的供应和贸易产生重大变化。[7]所造成的地缘政治和经济后果会十分重大,特别是对于最依赖此行业为生的国家而言。预计捕捞潜力下降幅度最大的会发生在热带地区,主要是在南太平洋[7]:iv

孟加拉国的沿海岸网鱼活动,此类渔业社区正受到海平面上升的威胁。[1]

气候变化对海洋的影响会影响到水产业水产养殖永续性(可持续性)、依赖渔业为生社区的生计以及海洋碳捕集与封存(生物泵)的能力。海平面上升表示沿海渔业社区将受到显著的气候变化影响,同时降水模式和用水变化也对内陆淡水渔业和水产养殖产生影响。[8]气候变化会增加洪水、疾病、寄生虫有害藻华的风险,造成生产和基础设施的损失。[7]

气候变化对海洋的影响

 
马尔代夫裙礁英语Fringing reef构成的小岛。世界各地的珊瑚礁受气候变化的影响,有甚多发生白化及死亡的情况。[9]

海岸生态系统英语Marine coastal ecosystem在全球碳循环碳截存中具有重要的功能。海洋温度上升和海洋酸化是由于大气中温室气体含量增加的结果。健康的海洋生态系统对于减缓气候变化非常重要。[10]珊瑚礁为数量甚大鱼种提供栖息地,这类海洋变化会导致珊瑚白化及死亡。[11]此外,海平面上升还影响到红树林草沼等,通常是因缺乏可供移转的土地和腹地,这类生态系统会因而消失。[12]

本节摘自气候变化对海洋的影响

气候变化对海洋的影响包括海水温度升高、海洋热浪发生频率增加、海洋酸化、海平面上升、北极海冰减少英语Arctic sea ice decline海水分层英语Ocean stratification加剧、海水含氧量降低洋流变化(包括大西洋经向翻转环流减弱)。[13]此类变化都会产生连锁反应,扰乱海洋生态系统。导致这些变化的主要因素是人为排放二氧化碳甲烷等温室气体所造成的气候变化,因为海洋可吸收气候系统中额外热量的大部分,而不可避免的导致海水变暖。[14]海洋吸收部分地球大气中的二氧化碳,而导致海水的pH值下降(海洋酸化)。[15]据估计,海洋已吸收人类排放二氧化碳的25%。[15]

随着气温上升导致海洋表层变暖,海水温度分层也随之增加,[16]:471结果是海水分层间混合减少,让海洋表层海水维持温暖状态,同时减少寒冷的深层海水上涌循环。此种上下海水混合的减少把海洋吸收热量的能力降低,把未来暖化的大部分温度交由大气和陆地承受。预计生成热带气旋和其他风暴的能量会因此增加,而上层海水可供鱼类使用的营养预计将会减少,海洋储存碳的能力也随之减少。[17]与此同时,盐度的对比正在增加中:咸度高的地区变得更高,而咸度低的地区的则变得更低。[18]

温室气体排放

渔业区块造成的温室气体排放在整体排放的占比很小,但仍有减少使用化石燃料而减少温室气体排放的空间。[7]:v例如渔船(包括内河船舶)于2012年占全球二氧化碳排放总量的约0.5%(1.723亿吨二氧化碳)。[7]估计水产养殖业于2010年排放3.85亿吨二氧化碳当量 (CO2e),约相当于农业排放总量的7%左右。[7]:v

对鱼类生产的影响

海洋酸度上升会让牡蛎珊瑚等海洋生物更难形成其外壳(钙化过程)。海洋中许多重要的动物,例如构成海洋食物链基础的浮游动物,都有质外壳。这种钙化外壳形成减少会让整个海洋食物网发生改变 - “食物链断裂”。[19]全球鱼类生产的分布、[20]生产力(参见全球渔业生产英语World fisheries production)和物种组成因而改变,[21]继而对海洋、河口湾、珊瑚礁、红树林和海藻林(鱼类栖息地和育苗区)产生复杂且相互关联的影响。[22]目前的降水模式变化和水资源稀缺英语Water scarcity正影响河流和湖泊渔业和淡水水产养殖生产。[23][24]在大约21,000年前的末次盛冰期之后,全球平均气温已上升约3°C,导致海水温度升高。 [25]

预计到2100年,全球海洋的鱼类捕捞量将下降6%,而热带地区将下降11%。多种电脑模型预测到2050年全球鱼类捕捞总量可能会变化不到10%(依据假设温室气体排放轨迹而定),但会有非常显著的地理差异。预测近85%的沿海国家海洋和陆地产量都会下降,但会因各国的调适能力而有巨大差异。[26]

由于气候变化对海洋温度和洋流的影响,预计短鲔种群会更为往东迁移。[27]将渔场转向太平洋岛屿英语List of islands in the Pacific Ocean,远离其原来在美拉尼西亚的产区,设于西太平洋罐头厂的生产设施将被迫迁移,也在当地产生粮食安全问题。[28]

受到过度捕捞的物种(例如大西洋鳕)更易受到气候变化的影响。受过度捕捞的鱼类在种群规模、遗传多样性和年龄均较其他鱼类种群为小。[29]让它们更易受到环境相关压力的影响,包括气候变化所产生的。在波罗的海的大西洋鳕鱼,其承受的压力已接近上限,更会造成种群平均规模和成长相关的不利后果。[30]

由于海水变暖,原本已适应较冷海水的桡足纲动物群已向北移动,遗留的空间被温水桡足纲动物群取代,但此类浮游动物的生物质较低,并且属于小型物种。这种绕足纲移动会对许多系统产生巨大影响,尤其是高营养级鱼类。[31]例如大西洋鳕鱼的幼鱼在春季生长期间原本仰赖大型桡足纲为食物来源,但由于它们已经移向极地,幼鱼因此有较高的死亡率,新鱼补充率不足而让整体种群规模急剧下降。[32]

气候变化导致水温升高会改变水生生态系统的生产力。其中某些生物的繁盛会不受欢迎,甚至是有害。例如当地表水体温度升高,生长在较小湖泊,已适应较低水温的大型捕食型鱼类会消失,而间接导致更多有害藻类的繁殖,把水体中的水质降低,会产生或有的健康问题。[33]

对渔业社区的影响

 
渔民收拾渔获上岸(于塞舌尔,一位于印度洋中西部的岛屿国家)。

沿海地区及捕鱼人,[34]以及依赖渔业为生的国家[35]特别具有气候变化脆弱性。像马尔代夫[36]图瓦卢等低海拔的岛屿国家尤其脆弱,整个社区人口均有成为气候难民的可能。孟加拉国的渔业社区不仅受到海平面上升的影响,还受到洪水和台风频率增加的影响。湄公河沿岸的渔业社区每年生产超过100万吨巴沙鱼,当地的生计和鱼类生产将因海平面上升和于上游建造水坝所导致的海水倒灌而受到影响。[37]美国阿拉斯加州乡村地区的诺阿塔克塞拉威克村的居民面临气候变化造成的多变天气、鱼类丰度和分布的变化,以及船舶进出等问题。[38]此类变化会极大影响当地的可持续性和以及生存模式[38]

渔业和水产养殖对全球的粮食安全和生计有巨大的贡献。鱼产为30亿人提供必需营养,并为最贫穷国家的4亿人提供至少50%的动物蛋白和矿物质。[39]但这种粮食来源受到气候变化和世界人口增长的威胁。气候变化把从事捕捞人口的几个参数:可用性、稳定性、可取得性和利用做了改变。[40]这些参数受到影响的具体程度会因地区的特征不同而有很大差异,一些地区受益于趋势转变,而另一些则依暴露程度、敏感性和对变化的反应能力等因素而受到损害。温暖水域缺氧,可能会导致水生动物灭绝。[41]

全球粮食安全可能不会发生重大变化,但乡村和贫困人口会遭到过高比例的负面影响,因为他们缺乏快速改变基础设施和适应的资源及人力。在孟加拉国、柬埔寨冈比亚加纳塞拉利昂共和国斯里兰卡,当地人口摄取的蛋白质中有超过一半来自鱼类。 [42]发展中国家有超过5亿人直接或间接依赖渔业和水产养殖为生。根据粮农组织(FAO)及经济合作暨发展组织(OECD)的报告,水产养殖在21世纪初是世界上增长最快的动物性蛋白质粮食生产系统,鱼产品是交易最广泛的食物之一,根据FAO,全球在2008年生产的海产品中有39%透过贸易流通。[43]

人类活动也加剧气候变化的影响。人类活动与湖水中的营养水平有关,而湖水中营养水平升高会增加气候变化的脆弱性。水体中营养物质过多(优氧化)会导致更多藻类和植物生长,而对人类、水生群落甚至是鸟类有害。[44]

气候变化还会同时对休闲渔业和商业渔业产生影响,因为鱼类分布的变化会导致热门捕鱼地点变化、渔业社区经济状况变化以及往北方捕捞的可能性会增加。[45]

调适

由于海水温度变化和氧气减少发生得太快,让受影响的物种无法有效调适。[46]鱼类可迁徙到水温较低处,但并不易找到合适的产卵地点。[46] 一些国际机构(包括世界银行和粮农组织(FAO)等[47])制定有帮助国家和社区适应全球变暖的计划,例如透过制定政策来提高自然资源的韧性、[48]透过评估风险和提高对气候变化影响的认识[49]并强化天气预报和早期预警系统等机构的能力。[50]根据国际复兴开发银行发布的《2010年世界发展报告英语World Development Report – 发展与气候变化》(第3章)[51]显示减少捕鱼船队英语Fishing fleet中过多的产能和重建鱼类种群英语Fish stocks既可以提高气候韧性,又可让海洋捕捞的收益每年增加500亿美元,同时还可减少捕鱼船队的温室气体排放。[52]因此取消捕捞燃料补贴既可减少排放,又能减少过度捕捞,有双重好处。[53]

投资于可持续水产养殖[54]可缓和农业用水压力,同时又能生产粮食和实现经济活动多样化。利用藻类生产生物燃料也显示具有潜力,因为每英亩生产藻类的产油量是油菜籽大豆油桐树等传统作物的15-300倍,而且藻类不需用到稀缺的淡水。全球环境基金赞助的珊瑚礁专门研究(Coral Reef Targeted Research)等项目提供有关增强韧性和保护珊瑚礁生态系统的建议,[55]而六个太平洋国家最近正式承诺保护称为珊瑚大三角生物多样性热点地区。[56]

调适气候变化的成本和效益基本上是由地方或国家承担及享受,而缓解的成本基本上是由国家承担,而效益则由全球共享。一些活动可同时产生缓解和调适效益,例如红树林复育可保护海岸线免受侵蚀,为鱼类提供繁殖地,同时还能达到固碳的目的。[57]

过度捕捞

 
耶鲁大学哥伦比亚大学提出的环境绩效指数,其中一项有关过度捕捞的指数 (2006 Pilot Environmental Performance Index)。图中标示颜色越浅的国家/地区,表示其过度捕捞情况越严重。

气候变化会导致渔业资源减少,但过度捕捞是个导致渔业资源减少的相关原因。[58]过度捕捞会加剧气候变化的影响,产生捕鱼人口对环境变化更具脆弱性的条件。研究显示目前海洋状况正在导致渔业崩溃之中,而在尚未崩溃的地区,过度捕捞正对渔业产生重大影响。此种有破坏性且不可持续的捕捞会影响生物多样性。[59]在最大程度减少过度捕捞和破坏性捕捞可增强海洋对气候变化的调适能力,而缓解气候变化。[60]

联合国已将可持续捕捞和终止导致过度捕捞的补贴作为2030年的关键目标,包含在可持续发展目标 14英语Sustainable Development Goal 14中“水下生物”的一部分。[61]

参见

采用文字来源

  本条目包含了自由内容作品内的文本。 在CC BY-SA 3.0 IGO下释出(许可证声明): 《In brief, The State of World Fisheries and Aquaculture, 2018》, FAO, FAO. 欲了解如何向维基百科条目内添加开放许可证文本,请见这里;欲知如何重用本站文字,请见使用条款

参考文献

  1. ^ Sarwar G.M. Impacts of Sea Level Rise on the Coastal Zone of Bangladesh (PDF) (Master's论文). Lund University. 2005 [2013-09-10]. (原始内容 (PDF)存档于2012-08-15). 
  2. ^ Observations: Oceanic Climate Change and Sea Level 互联网档案馆存档,存档日期2017-05-13. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (15 MB).
  3. ^ Doney, S. C. The Dangers of Ocean Acidification (PDF). Scientific American. 2006-03, 294 (3): 58–65 [2023-08-28]. Bibcode:2006SciAm.294c..58D. PMID 16502612. doi:10.1038/scientificamerican0306-58. (原始内容存档 (PDF)于2016-03-04). 
  4. ^ US EPA, OAR. Climate Action Benefits: Freshwater Fish. US EPA. 2015-04-07 [2020-04-06]. (原始内容存档于2021-04-10) (英语). 
  5. ^ Weatherdon, Lauren V.; Magnan, Alexandre K.; Rogers, Alex D.; Sumaila, U. Rashid; Cheung, William W. L. Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal Tourism, and Human Health: An Update. Frontiers in Marine Science. 2016, 3. ISSN 2296-7745. doi:10.3389/fmars.2016.00048 . 
  6. ^ Cheung, W.W.L.; et al. Redistribution of Fish Catch by Climate Change. A Summary of a New Scientific Analysis (PDF). Sea Around Us (报告). 2009-10. (原始内容 (PDF)存档于2011-07-26). 
  7. ^ 7.0 7.1 7.2 7.3 7.4 7.5 Manuel Barange; Tarûb Bahri; Malcolm C. M. Beveridge; K. L. Cochrane; S. Funge Smith; Florence Poulain (编). Impacts of climate change on fisheries and aquaculture: synthesis of current knowledge, adaptation and mitigation options. Rome: Food and Agriculture Organization of the United Nations. 2018. ISBN 978-92-5-130607-9. OCLC 1078885208. 
  8. ^ Intergovernmental Panel on Climate Change (IPCC) (编), Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press), 2022: 321–446 [2022-04-06], ISBN 978-1-00-915796-4, S2CID 246522316, doi:10.1017/9781009157964.006 , (原始内容存档于2022-10-21) 
  9. ^ Coral reefs around the world Guardian.co.uk, 2009-09-02.
  10. ^ Fisheries and Aquaculture in a Changing Climate (PDF). 2009 [2023-08-28]. (原始内容存档 (PDF)于2009-11-10). 
  11. ^ Shallow Coral Reef Habitat. NOAA Fisheries. 2022-02-04 [2022-04-06]. (原始内容存档于2023-08-30) (英语). 
  12. ^ Mimura, Nobou. Sea-level rise caused by climate change and its implications for society. Proc Jpn Acad Ser B Phys Biol Sci. [2023-04-27]. (原始内容存档于2023-05-02). 
  13. ^ Summary for Policymakers. The Ocean and Cryosphere in a Changing Climate (PDF). 2019: 3–36 [2023-03-26]. ISBN 978-1-00-915796-4. doi:10.1017/9781009157964.001. (原始内容存档 (PDF)于2023-03-29). 
  14. ^ Cheng, Lijing; Abraham, John; Hausfather, Zeke; Trenberth, Kevin E. How fast are the oceans warming?. Science. 2019-01-11, 363 (6423): 128–129. Bibcode:2019Sci...363..128C. PMID 30630919. S2CID 57825894. doi:10.1126/science.aav7619. 
  15. ^ 15.0 15.1 Doney, Scott C.; Busch, D. Shallin; Cooley, Sarah R.; Kroeker, Kristy J. The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. Annual Review of Environment and Resources. 2020-10-17, 45 (1): 83–112. doi:10.1146/annurev-environ-012320-083019  (英语).    Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License 互联网档案馆存档,存档日期2017-10-16.
  16. ^ Bindoff, N.L., W.W.L. Cheung, J.G. Kairo, J. Arístegui, V.A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M.S. Karim, L. Levin, S. O'Donoghue, S.R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, and P. Williamson, 2019: Chapter 5: Changing Ocean, Marine Ecosystems, and Dependent Communities 互联网档案馆存档,存档日期2019-12-20.. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 互联网档案馆存档,存档日期2021-07-12. [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.
  17. ^ Freedman, Andrew. Mixing of the planet's ocean waters is slowing down, speeding up global warming, study finds. The Washington Post. 2020-09-29 [2020-10-12]. (原始内容存档于2020-10-15). 
  18. ^ Cheng, Lijing; Trenberth, Kevin E.; Gruber, Nicolas; Abraham, John P.; Fasullo, John T.; Li, Guancheng; Mann, Michael E.; Zhao, Xuanming; Zhu, Jiang. Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle. Journal of Climate. 2020, 33 (23): 10357–10381. Bibcode:2020JCli...3310357C. doi:10.1175/jcli-d-20-0366.1 . 
  19. ^ Fabry, Victoria J.; Seibel, Brad A.; Feely, Richard A.; Orr, James C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science. 2008-04-01, 65 (3): 414–432. ISSN 1054-3139. doi:10.1093/icesjms/fsn048 . 
  20. ^ Changing distribution of fish in USA页面存档备份,存于互联网档案馆) (Youtube)
  21. ^ FAO (2008) Report of the FAO Expert Workshop on Climate Change Implications for Fisheries and Aquacultur[失效链接] Melanesiae[永久失效链接] Rome, Italy, 7–9 April 2008. FAO Fisheries Report No. 870.
  22. ^ Brander KM. Global fish production and climate change. Proc. Natl. Acad. Sci. U.S.A. 2007-12, 104 (50): 19709–14. Bibcode:2007PNAS..10419709B. PMC 2148362 . PMID 18077405. doi:10.1073/pnas.0702059104 . 
  23. ^ Ficke, A.D.; Myrick, C.A.; Hansen, L.J. Potential impacts of global climate change on freshwater fisheries (PDF). Fish Biology and Fisheries. 2007, 17 (4): 581–613 [2023-08-28]. S2CID 18832521. doi:10.1007/s11160-007-9059-5. (原始内容存档 (PDF)于2010-01-07). 
  24. ^ Handisyde, N.; et al. The Effects of Climate change on World Aquaculture: A global perspective (PDF). Department for International Development UK. 2006 [2023-08-28]. (原始内容存档 (PDF)于2016-03-03). 
  25. ^ Nye, J. (2010). Climate change and its effects on ecosystems, habitats and biota. (pp. 1-17). Maine: The Gulf of Maine Council on the Marine Environment.
  26. ^ In brief, The State of World Fisheries and Aquaculture, 2018 (PDF). FAO. 2018 [2023-08-28]. (原始内容存档 (PDF)于2021-06-10). 
  27. ^ Fisheries and Climate Change (PDF). Think Asia. ADB. [2017-11-29]. (原始内容存档 (PDF)于2023-06-01). 
  28. ^ FAO – News Article: Food security in the Pacific at risk due to climate change. www.fao.org. [2022-04-06]. (原始内容存档于2023-07-28). 
  29. ^ Stenseth, Nils; et al. Ecological forecasting under climate change: the case of Baltic cod. Proceedings: Biological Sciences. 2010, 277 (1691): 2121–2130. JSTOR 25706431. PMC 2880159 . PMID 20236982. doi:10.1098/rspb.2010.0353. 
  30. ^ Righton, David A.; Andersen, Ken Haste; Neat, Francis; Thorsteinsson, Vilhjalmur; Steingrund, Petur; Svedäng, Henrik; Michalsen, Kathrine; Hinrichsen, Hans-Harald; Bendall, Victoria; Neuenfeldt, Stefan; Wright, Peter. Thermal niche of Atlantic cod Gadus morhua: limits, tolerance and optima. Marine Ecology Progress Series. 2010-12-16, 420: 1–13 [2023-08-28]. Bibcode:2010MEPS..420....1R. ISSN 0171-8630. doi:10.3354/meps08889 . (原始内容存档于2023-07-28) (英语). 
  31. ^ Chivers, William J.; Walne, Anthony W.; Hays, Graeme C. Mismatch between marine plankton range movements and the velocity of climate change. Nature Communications. 2017-02-10, 8 (1): 14434. Bibcode:2017NatCo...814434C. ISSN 2041-1723. PMC 5309926 . PMID 28186097. doi:10.1038/ncomms14434 . 
  32. ^ Richardson, A. J. In hot water: Zooplankton and climate change. ICES Journal of Marine Science. 2008, 65 (3): 279–295. doi:10.1093/icesjms/fsn028 . 
  33. ^ Prakash, Sadguru. Impact of Climate Change on Aquatic Ecosystem and ITS Biodiversity: An Overview. International Journal of Biological Innovations. 2022-09-02, 03 (2): 6. S2CID 237639194. doi:10.46505/IJBI.2021.3210 .  The RFC-mandated website页面存档备份,存于互联网档案馆
  34. ^ Allison, E. H. et al. (2005) "Effects of climate change on the sustainability of capture and enhancement fisheries important to the poor: analysis of the vulnerability and adaptability of fisherfolk living in poverty" London, Fisheries Management Science Programme MRAG/DFID, Project no. R4778J. Final Technical Report, 164 pp.
  35. ^ Allison, E.H.; et al. Vulnerability of national economies to the impacts of climate change on fisheries (PDF). Fish and Fisheries. 2009, 10 (2): 173–96 [2009-12-02]. CiteSeerX 10.1.1.706.4228 . doi:10.1111/j.1467-2979.2008.00310.x. (原始内容 (PDF)存档于2011-07-26). 
  36. ^ Maldives President addresses the UN Climate Change Conference页面存档备份,存于互联网档案馆) (Youtube)
  37. ^ Halls, A.S. Fisheries Research and Development in the Mekong Region. Catch and Culture: Fisheries Research and Development in the Mekong Region. 2009-05, 15 (1). (原始内容存档于2011-06-05). 
  38. ^ 38.0 38.1 Moerlein, Katie; Carothers, Courtney. Total Environment of Change: Impacts of Climate Change and Social Transitions on Subsistence Fisheries in Northwest Alaska. Ecology and Society. 2012-02-07, 17 (1) [2023-08-28]. ISSN 1708-3087. doi:10.5751/ES-04543-170110 . (原始内容存档于2023-07-28) (英语). 
  39. ^ WorldFish Center, 2008. The Millennium Development Goals: Fishing for a Future: Reducing poverty and hunger by improving fisheries and aquaculture 互联网档案馆存档,存档日期2009-08-16.
  40. ^ Garcia, Serge. Food security and marine capture fisheries: characteristics, trends, drivers and future perspectives. Philosophical Transactions: Biological Sciences. 2010, 365 (1554): 2869–2880. JSTOR 20752984. PMC 2935129 . PMID 20713390. doi:10.1098/rstb.2010.0171. 
  41. ^ Portner, H; Knust, R. Climate Change Affects Marine Fishes Through the Oxygen Limitation or Thermal Tolerance. Science. 2007, 315 (5808): 95–97. Bibcode:2007Sci...315...95P. PMID 17204649. S2CID 9321336. doi:10.1126/science.1135471. 
  42. ^ Oloruntuyi, Yemi. How are developing countries tackling the issue of overfishing?. ID4D. Sustainable Development News. 2021-04-28 [2022-10-22]. (原始内容存档于2022-01-23) (英语). 
  43. ^ Green Growth in Fisheries and Aquaculture Production and Trade (PDF). Frank Asch, Professor Department of Industrial Economics, University of Stavenger, Norway. 2011 [2023-07-28]. (原始内容存档 (PDF)于2020-11-27). 
  44. ^ Jacobson, Peter C.; Hansen, Gretchen J. A.; Bethke, Bethany J.; Cross, Timothy K. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages. PLOS ONE. 2017-08-04, 12 (8): e0182667. Bibcode:2017PLoSO..1282667J. ISSN 1932-6203. PMC 5544199 . PMID 28777816. doi:10.1371/journal.pone.0182667  (英语). 
  45. ^ Harrod, Chris, Climate change and freshwater fisheries, Freshwater Fisheries Ecology (John Wiley & Sons, Ltd), 2015-09-12: 641–694 [2023-08-28], ISBN 978-1-118-39438-0, doi:10.1002/9781118394380.ch50, (原始内容存档于2023-07-28) 
  46. ^ 46.0 46.1 Vaughan, Adam. Climate change will make world too hot for 60 per cent of fish species. New Scientist. 2020-07-02 [2020-07-03]. (原始内容存档于2023-03-17). 
  47. ^ FAO (2007) Building adaptive capacity to climate change. Policies to sustain livelihoods and fisheries[永久失效链接]
  48. ^ Allison, E.H.; et al. Enhancing the resilience of inland fisheries and aquaculture systems to climate change. Journal of Semi-Arid Tropical Agricultural Research. 2007, 4 (1). 
  49. ^ Dulvy, N.; Allison, E. A place at the table?. Nature Reports Climate Change. 2009-05-28, 1 (906): 68. doi:10.1038/climate.2009.52 . 
  50. ^ The World Bank – Climate Change Adaptation页面存档备份,存于互联网档案馆) (website)
  51. ^ World Bank (2009) World Development Report 2010: Development and Climate Change. Chapter 3页面存档备份,存于互联网档案馆
  52. ^ towards global sustainable fisheries the opportunity for transition (PDF). The ISU Marine Programme. 2012-02 [2023-7-28]. (原始内容存档 (PDF)于2023-07-28). 
  53. ^ Villasante, Sebastián; Sumaila, U. Rashid. Strengthening European Union fisheries by removing harmful subsidies. Marine Policy. 2022-02, 136 [2023-07-28]. doi:10.1016/j.marpol.2021.104884. (原始内容存档于2023-07-28). 
  54. ^ World Bank (2006) Aquaculture: Changing the Face of the Waters: Meeting the Promise and Challenge of Sustainable Aquaculture页面存档备份,存于互联网档案馆
  55. ^ Coral Reef Targeted Research (2008) Climate change: It's now or never to save coral reefs 互联网档案馆存档,存档日期2011-02-21. CFTR Advisory Panel 2 Issue 1.
  56. ^ Coral Triangle Agreement页面存档备份,存于互联网档案馆) (YouTube)
  57. ^ Zimmer, Martin. Mangrove forests – a nature-based solution for climate change mitigation and adaptation. Rural21. 2022-03-18 [2023-03-24]. (原始内容存档于2023-03-25). 
  58. ^ Climate change and overfishing has shrunk global fisheries, study finds. Environment. 2019-02-28 [2022-04-06]. (原始内容存档于2023-07-20) (英语). 
  59. ^ Sustainable Fishing | MSC. MSC International – English. [2022-11-03]. (原始内容存档于2023-08-28) (英语). 
  60. ^ Sumaila, U. Rashid; Tai, Travis C. End Overfishing and Increase the Resilience of the Ocean to Climate Change. Frontiers in Marine Science. 2020-07-15, 7–2020 [2023-07-28]. doi:10.3389/fmars.2020.00523. (原始内容存档于2023-07-28). 
  61. ^ Goal 14 targets. UNDP. [2020-09-24]. (原始内容存档于2020-09-30) (英语). 

资料来源

  • Brander Keith. Impacts of climate change on fisheries (PDF). Journal of Marine Systems. 2010, 79 (3): 389–402 [2012-03-18]. Bibcode:2010JMS....79..389B. doi:10.1016/j.jmarsys.2008.12.015. (原始内容 (PDF)存档于2016-03-05). 
  • FAO (2009) Climate change implications for fisheries and aquaculture. Overview of current scientific knowledge Fisheries and Aquaculture Technical Paper 530, Rome.
  • Klyashtorin LB (2001) Climate change and long-term fluctuations of commercial catches: the possibility of forecasting[永久失效链接] Technical paper 410, FAO fisheries, Rome. ISBN 978-92-5-104695-1.