筛虾属
北方筛虾(学名:Tamisiocaris borealis),又称筛状奇虾[3],是筛虾属(学名:Tamisiocaris)唯一的物种[1],属于节肢动物门、恐虾纲、放射齿目、筛虾科。[1][4]它分布于寒武世第三期格陵兰的海洋[4][5][6],化石亦疑似出现在美国第四期组中。[2][7][6]筛虾是首个认证的滤食性奇虾[4][8],也是已知最早能够游泳的大型滤食性动物。[8][9]其过滤方式、食性以及生态位与现今须鲸、部分鲨鱼、鳐总目和同为放射齿目的海神盔虾属和帕凡特虾属类似。[4][10][11][12][6][13]
北方筛虾 | |
---|---|
筛虾的头部附肢复原图 | |
科学分类 | |
界: | 动物界 Animalia |
门: | 节肢动物门 Arthropoda |
纲: | †恐虾纲 Dinocaridida |
目: | †放射齿目 Radiodonta |
科: | †筛虾科 Tamisiocarididae |
属: | †筛虾属 Tamisiocaris Daley & Peel, 2010 |
种: | †北方筛虾 T. borealis
|
二名法 | |
†Tamisiocaris borealis Daley & Peel, 2010
|
筛虾属由艾莉森·C·戴利(Allison C. Daley)和约翰·S·皮尔(John S. Peel)于2010年基于单一化石标本描述。[1]2014年,英国和丹麦学者基于新出土的化石确认该属有效[4],并在之后划入新命名的筛虾科。[8]
发现
2010年,艾莉森·C·戴利和约翰·S·皮尔在论文中描述了他们去年挖掘到编号为MGUH 29154[注 1]的筛虾化石,其产地在北格陵兰皮里地半岛(Peary Land)J.P.科赫峡湾(J.P. Koch Fjord)的布恩组(Buen Formation),属于西里斯帕斯特生物群(Sirius Passet)的一员。[1][5][8][15]该化石保存状况较差,仅保存了头部的前附肢。前附肢为破碎状态,且连接头部的部分有断裂,边缘也有破损。[1][15][16]因此当初测量出的数据不准确。[1]2014年,耶鲁大学的雅各布·温瑟尔(Jakob Vinther)等人发表编号为MGUH 30500~MGUH 30504的标本,并发现筛虾的头部圆形骨片。[4]
2019年,艾希特大学的史蒂芬·帕茨(Stephen Pates)和戴利在美国国立自然史博物馆的馆藏中发现编号为USNM 90827/PA 388的标本,其来自金泽斯组(Kinzers Formation)。原本鉴定为宾州奇虾,但可能是筛虾近缘种的前附肢。[2][注 2]
命名
Tamisiocaris是合成词,“tamisium”意为筛子,因为戴利和约翰观察到筛虾前附肢上的刺非常纤细,猜测这些刺是用来过滤食物;“caris”意为螃蟹,是恐虾纲的常用学名字尾;种小名“borealis”的意思为北方,筛虾是第一种在格陵兰发现的奇虾,生存地点比其他奇虾更北。[1]其他奇虾化石主要分布在中国[7][17][18][19]、美国[20][21][22][2]、加拿大[23][24][12]。
描述
筛虾与许多放射齿目的物种一样,目前发现的化石只保存了头部的前附肢和部分的头部骨片,并未保存其他的部位。[1][4]其身长未知[4],但鲁迪·勒罗西-奥布里尔(Rudy Lerosey-Aubril)和史蒂芬·帕茨根据其他放射齿目物种计算出前附肢与全身大小的比例,推测其全长大约34厘米。[10]
筛虾的前附肢最长为12厘米,最少有18节。[4][9][25]三角形的节膜(arthrodial membrane)会将两节之间隔开,节膜几乎从腹侧延伸到背侧。节膜占了每节长度33%至55%,使前附肢弯曲灵活。第二节与第三节比起其他节更灵活。第一节的长度比后三节的总和还要长。腹侧的刺向外侧分叉,外观上呈倒V形,其称作前附肢棘(endite,ventral spines)。[4]第一节腹侧上还有一对往后倾斜、粗壮的刺。[4][21]剩下的17对刺,从每节中间突出且都非常纤细。[4][9]每两根前附肢棘之间大约宽5至6毫米。在化石上的前附肢棘普遍断裂,代表它们可能不柔软。前附肢上还有更细小的刺,称作“前附肢辅棘”(auxiliary spines),这些前附肢辅棘比起其他种类的奇虾更细长,长度约在4.2至5毫米。[4]两个前附肢辅棘中间相隔大约0.3至0.85毫米[4],外观看起来像是羽毛。[4][11]前附肢背侧很光滑[1],在末端只有一根向外突出且非常细小的刺。[1][21]在一块标本上还保存了椭圆形的头部骨片,大小超过了加拿大奇虾的相同部位。[4]在美国发现的筛虾近缘种之化石仅保存前附肢末端的9个节,而前附肢棘也非常纤细。[2]
生态
筛虾是以大约在0.49毫米的浮游生物为食[4][9][10][25][17],食性与以抓捕猎物的游动捕食者(例如:加拿大奇虾或是抱怪虫类)不同。[26][27][17]筛虾在当时属于很强势的滤食性物种之一。[28]在现存物种中的藤壶、磷虾等同样以浮游生物为食的甲壳类,都有细长的前附肢和柔软的刚毛或是细毛。目前推测筛虾可能是用两个前附肢在水中挥动并滤食大于筛孔的生物,再用口锥(放射齿目的专有口器)吸起被困在前附肢里的生物。在当时的寒武世包括筛虾等一大类自游生物的捕食者逐渐演化,填补了海洋一系列生态位。筛虾可能与现今的鲸鲨、姥鲨和滤食性鱼类或是栉水母、刺细胞动物、毛颚动物和部分节肢动物也都是趋同演化。[4]
过去的人们认为寒武世晚期(从古丈期至寒武世第十期)才演化出多样性的浮游生物和滤食性动物,浮游生物的食物链才逐渐演化出来。[29]但是筛虾的发现打破了这个理论,因为其生活在寒武世早期(从幸运期至寒武世第四期)[4][30],且理论发表后在其他化石产地也有发现其他滤食性动物。[4]
分类
戴利和皮尔最初对于筛虾的分类也不清楚,当时从未发现滤食性的奇虾或生活在格陵兰的奇虾,再加上只发现了一个破碎且不完整的附肢化石,被认为“可能是奇虾的一种”(possible anomalocaridid)。[1][15]2014年,温瑟尔等人比较筛虾与布氏奇虾(Anomalocaris briggsi)的前附肢特征,发现许多地方极为相似[31],例如:前附肢棘向后弯曲或是前附肢辅棘很密集[4][21],证明了筛虾和布氏奇虾是单系的演化支[9][10][23],温瑟尔等人将此演化支命名为鲸虾科(Cetiocaridae)[注 3]与赫德虾科为姊妹群。[4]之后的系统发生树也证明筛虾科与赫德虾科为姊妹群。[10][12][33][34]
2021年,吴雨将两种曾属于奇虾属的帚刺奇虾(Anomalocaris saron)和宽基奇虾(Anomalocaris magnabasis)被归类为侯氏虾属[35][注 4],和2023年布氏奇虾也被归类为新属——针鼹虾属也都加入筛虾科的新属。而针鼹虾与筛虾的关系比侯氏虾更为亲近[33],甚至可能是筛虾属的第二个物种。[37]增加了筛虾科的物种丰富度。[35][37]
注释
- ^ MGUH是哥本哈根地质博物馆大学(University of Copenhagen Geological Museum)的简写。
- ^ 宾州奇虾(Anomalocaris pennsylvanica)原本被归类在奇虾属,现在重新归类为光滑虾属(Lenisicaris)而改名宾州光滑虾(Lenisicaris pennsylvanica)。[2]
- ^ 名字是cetus(鲸鱼)和caris(螃蟹)合成而成[32],但是彼得·范-罗伊(Van Roy, Peter)等人通过国际动物命名规约第29.1和29.3条,认定此名无效,因为科的名字是由模式属来命名。直到2019年史蒂芬·帕茨和艾莉森·C·戴利两人重新发表并更名为筛虾科(Tamisiocarididae)。[2]
- ^ 现今关于巨基侯氏虾(Houcaris magnabasis)的分类也有争议,有学者将其重新归类为奇虾属。[36]
参考资料
- ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 Daley, Allison C.; Peel, John S. A possible anomalocaridid from the Cambrian Sirius Passet Lagerstätte, North Greenland. Journal of Paleontology. 2010-03, 84 (2) [2024-03-08]. ISSN 0022-3360. doi:10.1666/09-136r1.1. (原始内容存档于2023-07-16) (英语).
- ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Pates, Stephen; Daley, Allison C. The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts. dx.doi.org. 2019-01-31 [2024-05-04]. (原始内容存档于2024-05-16) (英语).
- ^ 博物馆. bm.cugb.edu.cn. [2024-05-07]. (原始内容存档于2024-05-07) (中文).
- ^ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 Vinther, Jakob; Stein, Martin; Longrich, Nicholas R.; Harper, David A. T. A suspension-feeding anomalocarid from the Early Cambrian. Nature. 2014-03, 507 (7493) [2024-05-04]. ISSN 0028-0836. doi:10.1038/nature13010. (原始内容存档于2022-11-11) (英语).
- ^ 5.0 5.1 Nielsen, Morten Lunde; al., et. Metamorphism obscures primary taphonomic pathways in the early Cambrian Sirius Passet Lagerstätte, North Greenland. dx.doi.org. 2021-08-20 [2024-05-14]. (原始内容存档于2024-05-14) (英语).
- ^ 6.0 6.1 6.2 Potin, Gaëtan J.-M.; Gueriau, Pierre; Daley, Allison C. Radiodont frontal appendages from the Fezouata Biota (Morocco) reveal high diversity and ecological adaptations to suspension-feeding during the Early Ordovician. Frontiers in Ecology and Evolution. 2023-08-09, 11. ISSN 2296-701X. doi:10.3389/fevo.2023.1214109 (英语).
- ^ 7.0 7.1 Wu, Yu; Ma, Jiaxin; Lin, Weiliang; Sun, Ao; Zhang, Xingliang; Fu, Dongjing. New anomalocaridids (Panarthropoda: Radiodonta) from the lower Cambrian Chengjiang Lagerstätte: Biostratigraphic and paleobiogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 2021-05, 569. ISSN 0031-0182. doi:10.1016/j.palaeo.2021.110333 (英语).
- ^ 8.0 8.1 8.2 8.3 Morrison, Jessica. Prehistoric 'weird shrimps' traded claws for nets (PDF). Nature. 2014-03-26 [2024-05-05]. ISSN 0028-0836. doi:10.1038/nature.2014.14934. (原始内容存档 (PDF)于2024-05-07) (英语).
- ^ 9.0 9.1 9.2 9.3 9.4 Stiefel, Klaus M. Evolutionary trends in large pelagic filter-feeders. Historical Biology. 2020-01-16, 33 (9). ISSN 0891-2963. doi:10.1080/08912963.2019.1711072 (英语).
- ^ 10.0 10.1 10.2 10.3 10.4 Lerosey-Aubril, Rudy; Pates, Stephen. New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton. Nature Communications. 2018-09-14, 9 (1) [2024-05-04]. ISSN 2041-1723. doi:10.1038/s41467-018-06229-7. (原始内容存档于2021-10-07) (英语).
- ^ 11.0 11.1 Guo, Jin; Pates, Stephen; Cong, Peiyun; Daley, Allison C.; Edgecombe, Gregory D.; Chen, Taimin; Hou, Xianguang. A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota. Papers in Palaeontology. 2018-08-13, 5 (1). ISSN 2056-2799. doi:10.1002/spp2.1231 (英语).
- ^ 12.0 12.1 12.2 Moysiuk, J.; Caron, J.-B. A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources. Proceedings of the Royal Society B: Biological Sciences. 2019-07-31, 286 (1908). ISSN 0962-8452. doi:10.1098/rspb.2019.1079 (英语).
- ^ Van Roy, Peter; Daley, Allison C.; Briggs, Derek E. G. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature. 2015-03-11, 522 (7554). ISSN 0028-0836. doi:10.1038/nature14256 (英语).
- ^ Harper, David A. T.; Hammarlund, Emma U.; Topper, Timothy P.; Nielsen, Arne T.; Rasmussen, Jan A.; Park, Tae-Yoon S.; Smith, M. Paul. The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian Explosion. Journal of the Geological Society. 2019-07-26, 176 (6). ISSN 0016-7649. doi:10.1144/jgs2019-043 (英语).
- ^ 15.0 15.1 15.2 Daley, Allison. The morphology and evolutionary significance of the anomalocaridids. (页面存档备份,存于互联网档案馆)Diss. Acta Universitatis Upsaliensis, 2010.(英文)
- ^ Legg, David A.; Vannier, Jean. The affinities of the cosmopolitan arthropod Isoxys and its implications for the origin of arthropods. Lethaia. 2013-10, 46 (4). ISSN 0024-1164. doi:10.1111/let.12032 (英语).
- ^ 17.0 17.1 17.2 Liu, Jianni; Lerosey-Aubril, Rudy; Steiner, Michael; Dunlop, Jason A; Shu, Degan; Paterson, John R. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan. National Science Review. 2018-06-01, 5 (6). ISSN 2095-5138. doi:10.1093/nsr/nwy057 (英语).
- ^ Xian‐Guang, Hou; Bergström, Jan; Ahlberg, Per. Anomalocaris and other large animals in the lower Cambrian Chengjiang fauna of southwest China. GFF. 1995-09, 117 (3). ISSN 1103-5897. doi:10.1080/11035899509546213 (英语).
- ^ Cong, C; Ma, M; Hou, H; Edgecombe, E; Strausfeld, S. Brain structure resolves the segmental affinity of anomalocaridid appendages (project). MorphoBank datasets. 2015 [2024-05-04] (英语).
- ^ Robison, Richard A.; Richards, Beverley Cobb. Larger bivalve arthropods from the Middle Cambrian of Utah. 1981-12-16 [2024-05-04]. ISSN 0075-5052. (原始内容存档于2023-09-26) (美国英语).
- ^ 21.0 21.1 21.2 21.3 Pates, Stephen; Daley, Allison C.; Butterfield, Nicholas J. First report of paired ventral endites in a hurdiid radiodont. dx.doi.org. 2019-06-12 [2024-05-04] (英语).
- ^ "The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian)". 2021-01-19. doi:10.7287/peerj.10509v0.1/reviews/2 (英语).
- ^ 23.0 23.1 Caron, J.-B.; Moysiuk, J. A giant nektobenthic radiodont from the Burgess Shale and the significance of hurdiid carapace diversity. Royal Society Open Science. 2021-09, 8 (9). ISSN 2054-5703. doi:10.1098/rsos.210664 (英语).
- ^ The largest Cambrian animal,Anomalocaris, Burgess Shale, British-Columbia. Philosophical Transactions of the Royal Society of London. B, Biological Sciences. 1985-05-14, 309 (1141). ISSN 0080-4622. doi:10.1098/rstb.1985.0096 (英语).
- ^ 25.0 25.1 Leigh, Egbert Giles. The diversification of modern animals: Douglas Erwin and James Valentine on the Cambrian explosion. Evolution: Education and Outreach. 2014-10-14, 7 (1). ISSN 1936-6426. doi:10.1186/s12052-014-0022-3 (英语).
- ^ Cong, Peiyun; Daley, Allison C.; Edgecombe, Gregory D.; Hou, Xianguang. The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata. BMC Evolutionary Biology. 2017-08-30, 17 (1). ISSN 1471-2148. doi:10.1186/s12862-017-1049-1 (英语).
- ^ De Vivo, Giacinto; Lautenschlager, Stephan; Vinther, Jakob. Three-dimensional modelling, disparity and ecology of the first Cambrian apex predators. Proceedings of the Royal Society B: Biological Sciences. 2021-07-21, 288 (1955). ISSN 0962-8452. doi:10.1098/rspb.2021.1176 (英语).
- ^ Wu, Ke. The effects of environmental change on Clypeasteroids and adaptive evolutionary history. International Conference on Modern Medicine and Global Health (ICMMGH 2023) (SPIE). 2023-09-07. doi:10.1117/12.2692468.
- ^ Signor, Philip W.; Vermeij, Geerat J. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology. 1994, 20 (3) [2024-05-11]. ISSN 0094-8373. doi:10.1017/s0094837300012793. (原始内容存档于2023-04-21) (英语).
- ^ Pates, Stephen; Daley, Allison C.; Legg, David A.; Rahman, Imran A. Vertically migrating Isoxys and the early Cambrian biological pump. Proceedings of the Royal Society B: Biological Sciences. 2021-06-23, 288 (1953). ISSN 0962-8452. doi:10.1098/rspb.2021.0464.
- ^ Paterson, John R.; Edgecombe, Gregory D.; García-Bellido, Diego C. Disparate compound eyes of Cambrian radiodonts reveal their developmental growth mode and diverse visual ecology. Science Advances. 2020-12-04, 6 (49). ISSN 2375-2548. doi:10.1126/sciadv.abc6721 (英语).
- ^ Van Roy, Peter; Daley, Allison C.; Briggs, Derek E. G. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature. 2015-06, 522 (7554). ISSN 0028-0836. doi:10.1038/nature14256 (英语).
- ^ 33.0 33.1 Moysiuk, Joseph; Caron, Jean-Bernard. A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation. Current Biology. 2022-08, 32 (15). ISSN 0960-9822. doi:10.1016/j.cub.2022.06.027 (英语).
- ^ Zeng, Han; Zhao, Fangchen; Zhu, Maoyan. Innovatiocaris, a complete radiodont from the early Cambrian Chengjiang Lagerstätte and its implications for the phylogeny of Radiodonta. Journal of the Geological Society. 2022-12-13, 180 (1). ISSN 0016-7649. doi:10.1144/jgs2021-164 (英语).
- ^ 35.0 35.1 Wu, Yu; Fu, Dongjing; Ma, Jiaxin; Lin, Weiliang; Sun, Ao; Zhang, Xingliang. Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta). PalZ. 2021-05-28, 95 (2) [2024-05-25]. ISSN 0031-0220. doi:10.1007/s12542-020-00545-4. (原始内容存档于2023-12-05) (英语).
- ^ McCall, Christian R.A. A large pelagic lobopodian from the Cambrian Pioche Shale of Nevada. Journal of Paleontology. 2023-09, 97 (5). ISSN 0022-3360. doi:10.1017/jpa.2023.63 (英语).
- ^ 37.0 37.1 Paterson, John R.; García-Bellido, Diego C.; Edgecombe, Gregory D. The early Cambrian Emu Bay Shale radiodonts revisited: morphology and systematics. Journal of Systematic Palaeontology. 2023-01, 21 (1). ISSN 1477-2019. doi:10.1080/14772019.2023.2225066 (英语).