用户:DoroWolf/沙盒/氧化铁

Iron(III) oxide
IUPAC名
Iron(III) oxide
别名 ferric oxide, haematite, ferric iron, red iron oxide, rouge, maghemite, colcothar, iron sesquioxide, rust, ochre
识别
CAS号 1309-37-1  checkY
PubChem 518696
ChemSpider 14147
SMILES
 
  • O1[Fe]2O[Fe]1O2
InChI
 
  • 1/2Fe.3O/rFe2O3/c3-1-4-2(3)5-1
InChIKey JEIPFZHSYJVQDO-ZVGCCQCPAC
Gmelin 11092
ChEBI 50819
RTECS NO7400000
KEGG C19424
性质
化学式 Fe2O3
摩尔质量 159.69 g·mol−1
外观 Red-brown solid
气味 Odorless
密度 5.25 g/cm3[1]
熔点 1539 °C(1812 K)
溶解性 Insoluble
溶解性 Soluble in diluted acids,[1] barely soluble in sugar solution[2]
Trihydrate slightly soluble in aq. tartaric acid, citric acid, CH3COOH[3]
磁化率 +3586.0x10−6 cm3/mol
折光度n
D
n1 = 2.91, n2 = 3.19 (α, hematite)[4]
结构
晶体结构 Rhombohedral, hR30 (α-form)[5]
Cubic bixbyite, cI80 (β-form)
Cubic spinel (γ-form)
Orthorhombic (ε-form)[6]
空间群 R3c, No. 161 (α-form)[5]
Ia3, No. 206 (β-form)
Pna21, No. 33 (ε-form)[6]
配位几何 Octahedral (Fe3+, α-form, β-form)[5]
热力学
ΔfHm298K −824.2 kJ/mol[7]
S298K 87.4 J/mol·K[7]
热容 103.9 J/mol·K[7]
危险性
GHS危险性符号
《全球化学品统一分类和标签制度》(简称“GHS”)中有害物质的标签图案[8]
GHS提示词 Warning
H-术语 H315, H319, H335[8]
P-术语 P261, P305+351+338[8]
NFPA 704
0
0
0
 
PEL TWA 10 mg/m3[9]
TLV {{{TLV}}}, 5 mg/m3[1] (TWA)
致死量或浓度:
LD50中位剂量
10 g/kg (rats, oral)[10]
相关物质
其他阴离子 Iron(III) fluoride
其他阳离子 Manganese(III) oxide
Cobalt(III) oxide
相关化合物 Iron(II) oxide
Iron(II,III) oxide
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。
Vial with iron(III) oxide
Iron(III) oxide in a vial

Iron(III) oxide or ferric oxide is the inorganic compound with the formula Fe2O3. It is one of the three main oxides of iron, the other two being iron(II) oxide (FeO), which is rare; and iron(II,III) oxide (Fe3O4), which also occurs naturally as the mineral magnetite. As the mineral known as hematite, Fe2O3 is the main source of iron for the steel industry. Fe2O3 is readily attacked by acids. Iron(III) oxide is often called rust, and to some extent this label is useful, because rust shares several properties and has a similar composition; however, in chemistry, rust is considered an ill-defined material, described as Hydrous ferric oxide.[11]

Structure

Fe2O3 can be obtained in various polymorphs. In the main one, α, iron adopts octahedral coordination geometry. That is, each Fe center is bound to six oxygen ligands. In the γ polymorph, some of the Fe sit on tetrahedral sites, with four oxygen ligands.

Alpha phase

α-Fe2O3 has the rhombohedral, corundum (α-Al2O3) structure and is the most common form. It occurs naturally as the mineral hematite which is mined as the main ore of iron. It is antiferromagnetic below ~260 K (Morin transition temperature), and exhibits weak ferromagnetism between 260 K and the Néel temperature, 950 K.[12] It is easy to prepare using both thermal decomposition and precipitation in the liquid phase. Its magnetic properties are dependent on many factors, e.g. pressure, particle size, and magnetic field intensity.

Gamma phase

γ-Fe2O3 has a cubic structure. It is metastable and converted from the alpha phase at high temperatures. It occurs naturally as the mineral maghemite. It is ferromagnetic and finds application in recording tapes,[13] although ultrafine particles smaller than 10 nanometers are superparamagnetic. It can be prepared by thermal dehydratation of gamma iron(III) oxide-hydroxide. Another method involves the careful oxidation of iron(II,III) oxide (Fe3O4).[13] The ultrafine particles can be prepared by thermal decomposition of iron(III) oxalate.

Other solid phases

Several other phases have been identified or claimed. The β-phase is cubic body-centered (space group Ia3), metastable, and at temperatures above 500 °C(930 °F) converts to alpha phase. It can be prepared by reduction of hematite by carbon,[需要解释] pyrolysis of iron(III) chloride solution, or thermal decomposition of iron(III) sulfate.[14]

The epsilon (ε) phase is rhombic, and shows properties intermediate between alpha and gamma, and may have useful magnetic properties applicable for purposes such as high density recording media for big data storage.[15] Preparation of the pure epsilon phase has proven very challenging. Material with a high proportion of epsilon phase can be prepared by thermal transformation of the gamma phase. The epsilon phase is also metastable, transforming to the alpha phase at between 500、750 °C(930、1,380 °F). It can also be prepared by oxidation of iron in an electric arc or by sol-gel precipitation from iron(III) nitrate.[来源请求] Research has revealed epsilon iron(III) oxide in ancient Chinese Jian ceramic glazes, which may provide insight into ways to produce that form in the lab.[16][需要非第一手来源]

Additionally, at high pressure an amorphous form is claimed.[6][需要非第一手来源]

Liquid phase

Molten Fe2O3 is expected to have a coordination number of close to 5 oxygen atoms about each iron atom, based on measurements of slightly oxygen deficient supercooled liquid iron oxide droplets, where supercooling circumvents the need for the high oxygen pressures required above the melting point to maintain stoichiometry.[17]

Hydrated iron(III) oxides

Several hydrates of Iron(III) oxide exist. When alkali is added to solutions of soluble Fe(III) salts, a red-brown gelatinous precipitate forms. This is not Fe(OH)3, but Fe2O3·H2O (also written as Fe(O)OH). Several forms of the hydrated oxide of Fe(III) exist as well. The red lepidocrocite (γ-Fe(O)OH) occurs on the outside of rusticles, and the orange goethite (α-Fe(O)OH) occurs internally in rusticles. When Fe2O3·H2O is heated, it loses its water of hydration. Further heating at 1670 kelvin converts Fe2O3 to black Fe3O4 (FeIIFeIII2O4), which is known as the mineral magnetite. Fe(O)OH is soluble in acids, giving [Fe(H
2
O)
6
]3+. In concentrated aqueous alkali, Fe2O3 gives [Fe(OH)6]3−.[13]

Reactions

The most important reaction is its carbothermal reduction, which gives iron used in steel-making:

Fe2O3 + 3 CO → 2 Fe + 3 CO2

Another redox reaction is the extremely exothermic thermite reaction with aluminium.[18]

2 Al + Fe2O3 → 2 Fe + Al2O3

This process is used to weld thick metals such as rails of train tracks by using a ceramic container to funnel the molten iron in between two sections of rail. Thermite is also used in weapons and making small-scale cast-iron sculptures and tools.

Partial reduction with hydrogen at about 400 °C produces magnetite, a black magnetic material that contains both Fe(III) and Fe(II):[19]

3 Fe2O3 + H2 → 2 Fe3O4 + H2O

Iron(III) oxide is insoluble in water but dissolves readily in strong acid, e.g. hydrochloric and sulfuric acids. It also dissolves well in solutions of chelating agents such as EDTA and oxalic acid.

Heating iron(III) oxides with other metal oxides or carbonates yields materials known as ferrates (ferrate (III)):[19]

ZnO + Fe2O3 → Zn(FeO2)2

Preparation

Iron(III) oxide is a product of the oxidation of iron. It can be prepared in the laboratory by electrolyzing a solution of sodium bicarbonate, an inert electrolyte, with an iron anode:

4 Fe + 3 O2 + 2 H2O → 4 FeO(OH)

The resulting hydrated iron(III) oxide, written here as FeO(OH), dehydrates around 200 °C.[19][20]

2 FeO(OH) → Fe2O3 + H2O

Uses

Iron industry

The overwhelming application of iron(III) oxide is as the feedstock of the steel and iron industries, e.g. the production of iron, steel, and many alloys.[20]

Polishing

A very fine powder of ferric oxide is known as "jeweler's rouge", "red rouge", or simply rouge. It is used to put the final polish on metallic jewelry and lenses, and historically as a cosmetic. Rouge cuts more slowly than some modern polishes, such as cerium(IV) oxide, but is still used in optics fabrication and by jewelers for the superior finish it can produce. When polishing gold, the rouge slightly stains the gold, which contributes to the appearance of the finished piece. Rouge is sold as a powder, paste, laced on polishing cloths, or solid bar (with a wax or grease binder). Other polishing compounds are also often called "rouge", even when they do not contain iron oxide. Jewelers remove the residual rouge on jewelry by use of ultrasonic cleaning. Products sold as "stropping compound" are often applied to a leather strop to assist in getting a razor edge on knives, straight razors, or any other edged tool.

Pigment

Two different colors at different hydrate phase (α: red, β: yellow) of iron(III) oxide hydrate;[3] they are useful as pigments.

Iron(III) oxide is also used as a pigment, under names "Pigment Brown 6", "Pigment Brown 7", and "Pigment Red 101".[21] Some of them, e.g. Pigment Red 101 and Pigment Brown 6, are approved by the US Food and Drug Administration (FDA) for use in cosmetics. Iron oxides are used as pigments in dental composites alongside titanium oxides.[22]

Hematite is the characteristic component of the Swedish paint color Falu red.

Magnetic recording

Iron(III) oxide was the most common magnetic particle used in all types of magnetic storage and recording media, including magnetic disks (for data storage) and magnetic tape (used in audio and video recording as well as data storage). Its use in computer disks was superseded by cobalt alloy, enabling thinner magnetic films with higher storage density.[23]

Photocatalysis

α-Fe2O3 has been studied as a photoanode for solar water oxidation.[24] However, its efficacy is limited by a short diffusion length (2–4 nm) of photo-excited charge carriers[25] and subsequent fast recombination, requiring a large overpotential to drive the reaction.[26] Research has been focused on improving the water oxidation performance of Fe2O3 using nanostructuring,[24] surface functionalization,[27] or by employing alternate crystal phases such as β-Fe2O3.[28]

Medicine

Calamine lotion, used to treat mild itchiness, is chiefly composed of a combination of zinc oxide, acting as astringent, and about 0.5% iron(III) oxide, the product's active ingredient, acting as antipruritic. The red color of iron(III) oxide is also mainly responsible for the lotion's pink color.

See also

References

  1. ^ 1.0 1.1 1.2 引用错误:没有为名为crc的参考文献提供内容
  2. ^ A dictionary of chemical solubilities, inorganic. archive.org. [17 November 2020]. 
  3. ^ 3.0 3.1 引用错误:没有为名为doc00的参考文献提供内容
  4. ^ Haynes, p. 4.141
  5. ^ 5.0 5.1 5.2 Ling, Yichuan; Wheeler, Damon A.; Zhang, Jin Zhong; Li, Yat. Zhai, Tianyou; Yao, Jiannian , 编. One-Dimensional Nanostructures: Principles and Applications. John Wiley & Sons, Inc. (Hoboken, New Jersey: John Wiley & Sons, Inc.). 2013: 167. ISBN 978-1-118-07191-5. 
  6. ^ 6.0 6.1 6.2 Vujtek, Milan; Zboril, Radek; Kubinek, Roman; Mashlan, Miroslav. Ultrafine Particles of Iron(III) Oxides by View of AFM – Novel Route for Study of Polymorphism in Nano-world (PDF). Univerzity Palackého. [2014-07-12]. 
  7. ^ 7.0 7.1 7.2 引用错误:没有为名为crc2的参考文献提供内容
  8. ^ 8.0 8.1 8.2 来源:Sigma-Aldrich Co., Iron(III) oxide (2014-07-12查阅).
  9. ^ NIOSH Pocket Guide to Chemical Hazards. #0344. NIOSH. 
  10. ^ 引用错误:没有为名为leker的参考文献提供内容
  11. ^ PubChem. Iron oxide (Fe2O3), hydrate. pubchem.ncbi.nlm.nih.gov. [2020-11-11] (英语). 
  12. ^ Greedan, J. E. Magnetic oxides. King, R. Bruce (编). Encyclopedia of Inorganic chemistry. New York: John Wiley & Sons. 1994. ISBN 978-0-471-93620-6. 
  13. ^ 13.0 13.1 13.2 Housecroft, Catherine E.; Sharpe, Alan G. Chapter 22: d-block metal chemistry: the first row elements. Inorganic Chemistry  3rd. Pearson. 2008: 716. ISBN 978-0-13-175553-6. 
  14. ^ Mechanism of Oxidation & Thermal Decomposition of Iron Sulphides (PDF). 
  15. ^ Tokoro, Hiroko; Namai, Asuka; Ohkoshi, Shin-Ichi. Advances in magnetic films of epsilon-iron oxide toward next-generation high-density recording media. Dalton Transactions (Royal Society of Chemistry). 2021, 50 (2): 452–459 [25 January 2021]. PMID 33393552. S2CID 230482821. doi:10.1039/D0DT03460F. 
  16. ^ Dejoie, Catherine; Sciau, Philippe; Li, Weidong; Noé, Laure; Mehta, Apurva; Chen, Kai; Luo, Hongjie; Kunz, Martin; Tamura, Nobumichi; Liu, Zhi. Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Scientific Reports. 2015, 4: 4941. PMC 4018809 . PMID 24820819. doi:10.1038/srep04941. 
  17. ^ Shi, Caijuan; Alderman, Oliver; Tamalonis, Anthony; Weber, Richard; You, Jinglin; Benmore, Chris. Redox-structure dependence of molten iron oxides. Communications Materials. 2020, 1 (1): 80. Bibcode:2020CoMat...1...80S. doi:10.1038/s43246-020-00080-4 . 
  18. ^ Adlam; Price. Higher School Certificate Inorganic Chemistry. Leslie Slater Price. 1945. 
  19. ^ 19.0 19.1 19.2 Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1661.
  20. ^ 20.0 20.1 Greenwood, N. N.; Earnshaw, A. Chemistry of the Element 2nd. Oxford: Butterworth-Heinemann. 1997. ISBN 978-0-7506-3365-9. 
  21. ^ Paint and Surface Coatings: Theory and Practice. William Andrew Inc. 1999. ISBN 978-1-884207-73-0. 
  22. ^ Banerjee, Avijit. Pickard's Manual of Operative Dentistry. United States: Oxford University Press Inc., New York. 2011: 89. ISBN 978-0-19-957915-0. 
  23. ^ Piramanayagam, S. N. Perpendicular recording media for hard disk drives. Journal of Applied Physics. 2007, 102 (1): 011301–011301–22. Bibcode:2007JAP...102a1301P. doi:10.1063/1.2750414. 
  24. ^ 24.0 24.1 Kay, A., Cesar, I. and Grätzel, M. New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films. Journal of the American Chemical Society. 2006, 128 (49): 15714–15721. PMID 17147381. doi:10.1021/ja064380l. 
  25. ^ Kennedy, J.H. and Frese, K.W. Photooxidation of Water at α-Fe2O3 Electrodes. Journal of the Electrochemical Society. 1978, 125 (5): 709. Bibcode:1978JElS..125..709K. doi:10.1149/1.2131532. 
  26. ^ Le Formal, F. Back Electron–Hole Recombination in Hematite Photoanodes for Water Splitting. Journal of the American Chemical Society. 2014, 136 (6): 2564–2574. PMID 24437340. doi:10.1021/ja412058x . 
  27. ^ Zhong, D.K. and Gamelin, D.R. Photoelectrochemical Water Oxidation by Cobalt Catalyst ("Co−Pi")/α-Fe2O3 Composite Photoanodes: Oxygen Evolution and Resolution of a Kinetic Bottleneck. Journal of the American Chemical Society. 2010, 132 (12): 4202–4207. PMID 20201513. doi:10.1021/ja908730h. 
  28. ^ Emery, J.D. Atomic Layer Deposition of Metastable β-Fe2O3 via Isomorphic Epitaxy for Photoassisted Water Oxidation. ACS Applied Materials & Interfaces. 2014, 6 (24): 21894–21900. OSTI 1355777. PMID 25490778. doi:10.1021/am507065y.