勒壤得擬譜法
最優控制中的勒壤得擬譜法(Legendre pseudospectral method)是以勒讓德多項式為基礎的方式。是擬譜最佳控制中的一部份,後者是由I. Michael Ross所命名的理論[1]。勒壤得擬譜法的基本版本最早是由Elnagar等人在1995年提出[2]。之後,I. Michael Ross、Fariba Fahroo等人[3][4][5][6][7]延伸擴展此方法,應用到更大範圍的問題中[8]。其中一個受到廣泛宣傳的應用[9][10]是用此方法來產生國際太空站的實時軌跡。
基礎
勒壤得擬譜法可以分為三種[1]:
以高斯-洛巴度取樣點(Gauss-Lobatto points)為基礎的勒壤得擬譜法,最早是由Elnagar等人提出[2],之後被Fahroo和Ross所擴展[4],包括了伴隨向量映射原理。這種勒壤得擬譜法是求解一般非線性有限時域滾動(finite-horizon)最佳控制問題的基礎[1][11][12],像DIDO、OTIS、PSOPT軟體中都有此方法。
以高斯-藍道取樣點(Gauss-Radau points)為基礎的勒壤得擬譜法,最早是由Fahroo和Ross提出[13],之後也擴展,包括了伴隨向量映射原理.[5]求解有一個自由終端點的非線性有限時域滾動最佳控制問題的基礎[1][12]。
以高斯取樣點(Gauss points)為基礎的勒壤得擬譜法,最早是由Reddien所提出[14],是求解有多個自由終端點的非線性有限時域滾動最佳控制問題的基礎[11][12],在GPOPS-II、PROPT軟體中都有整合此方法。
軟體
第一個實現勒壤得擬譜法的軟體是2001年的DIDO[12][15],之後也整合到NASA的OTIS程式中[16],幾年後,像PSOPT、PROPT及GPOPS等軟體也有此機能。
太空船航行上的實現
美國國家航空暨太空總署已在許多太空船的航行上,用DIDO軟體使用高斯-洛巴度取樣點(Gauss-Lobatto points)為基礎的勒壤得擬譜法已實現在[1]。第一次在太空船的航行上的實現是在2006年11月5日,由DIDO來操作國際太空站,達到零燃料機動[17]。 零燃料機動是Nazareth Bedrossian用DIDO所發現的方法。
相關條目
參考資料
- ^ 1.0 1.1 1.2 1.3 1.4 Ross, I. M.; Karpenko, M. A Review of Pseudospectral Optimal Control: From Theory to Flight. Annual Reviews in Control. 2012, 36 (2): 182–197 [2019-02-01]. doi:10.1016/j.arcontrol.2012.09.002. (原始內容存檔於2015-09-24).
- ^ 2.0 2.1 G. Elnagar, M. A. Kazemi, and M. Razzaghi, "The Pseudospectral Legendre Method for Discretizing Optimal Control Problems," IEEE Transactions on Automatic Control, 40:1793–1796, 1995.
- ^ Ross, I. M. and Fahroo, F., 「Legendre Pseudospectral Approximations of Optimal Control Problems,」 Lecture Notes in Control and Information Sciences, Vol. 295, Springer-Verlag, New York, 2003, pp 327-342
- ^ 4.0 4.1 Fahroo, F. and Ross, I. M., 「Costate Estimation by a Legendre Pseudospectral Method,」 Journal of Guidance, Control and Dynamics, Vol.24, No.2, March–April 2001, pp.270-277.
- ^ 5.0 5.1 Fahroo, F. and Ross, I. M., 「Pseudospectral Methods for Infinite-Horizon Optimal Control Problems,」 Journal of Guidance, Control and Dynamics, Vol. 31, No. 4, pp. 927-936, 2008.
- ^ Kang, W.; Gong, Q.; Ross, I. M.; Fahroo, F. On the Convergence of Nonlinear Optimal Control Using Pseudospectral Methods for Feedback Linearizable Systems. International Journal of Robust and Nonlinear Control: 2007.
- ^ Ross, I. M.; Fahroo, F. Pseudospectral Knotting Methods for Solving Nonsmooth Optimal Control Problems. Journal of Guidance Control and Dynamics: 2004.
- ^ Q. Gong, W. Kang, N. Bedrossian, F. Fahroo, P. Sekhavat and K. Bollino, "Pseudospectral Optimal Control for Military and Industrial Applications," 46th IEEE Conference on Decision and Control, New Orleans, LA, pp. 4128–4142, Dec. 2007.
- ^ Kang, W.; Bedrossian, N. Pseudospectral Optimal Control Theory Makes Debut Flight, Saves NASA $1M in Under Three Hours. SIAM News: 2007.
- ^ Bedrossian, N. S., Bhatt, S., Kang, W. and Ross, I. M., 「Zero-Propellant Maneuver Guidance,」 IEEE Control Systems Magazine, Vol.29, No.5, October 2009, pp 53-73; Cover Story.
- ^ 11.0 11.1 Fahroo F., and Ross, I. M., "Advances in Pseudospectral Methods for Optimal Control," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2008-7309, Honolulu, Hawaii, August 2008.
- ^ 12.0 12.1 12.2 12.3 Ross, Isaac. A Primer on Pontryagin's Principle in Optimal Control. San Francisco: Collegiate Publishers. 2015.
- ^ Fahroo, F. and Ross, I. M., 「Pseudospectral Methods for Infinite Horizon Nonlinear Optimal Control Problems,」 AIAA Guidance, Navigation and Control Conference, August 15–18, 2005, San Francisco, CA
- ^ Reddien, G.W., "Collocation at Gauss Points as a Discretization in Optimal Control," SIAM Journal on Control and Optimization, Vol. 17, No. 2, March 1979.
- ^ J. R. Rea, A Legendre Pseudospectral Method for Rapid Optimization of Launch Vehicle Trajectories, S.M. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2001. http://dspace.mit.edu/handle/1721.1/8608 (頁面存檔備份,存於網際網路檔案館)
- ^ [ OTIS ] Optimal Trajectories by Implicit Simulation. otis.grc.nasa.gov. [2016-12-08]. (原始內容存檔於2016-11-18).
- ^ Zero Propellant Maneuver. [2008-10-05]. (原始內容存檔於2008-10-05).