嘧啶二聚體

化合物

嘧啶二聚體(英語:pyrimidine dimer,簡稱PD),是DNARNA中的相鄰鹼基,如胞嘧啶胸腺嘧啶,在紫外線的誘導下進行光化學合成,於碳-碳雙鍵生成共價鍵而形成的一種化合物,是突變產生的原因之一 [1][2][3]。在雙鏈RNA中,紫外線也可能導致脲嘧啶二聚體生成。紫外線二聚體的常見例子包括環丁烷嘧啶二聚體及6-4光產物。它們改變了DNA原有結構,令聚合酶無法正常運作,DNA無法複製。嘧啶二聚體可通過光致活作用核苷酸切除修復的作用來修復。如果最終無法修復,可引致突變

DNA胸腺嘧啶二聚體的形成。光子的作用所導致在一條DNA鏈上的兩個連續鹼基結合到一起,從而破壞正常鹼基配對的雙鏈結構。

種類

 
胸腺嘧啶光化二聚體的例子包括:6-4光產物(左)及環丁烷(右)

環丁烷嘧啶二聚體(CPD)由嘧啶的碳-碳雙鍵的偶聯反應所生成,共有四個環。它們影響了DNA複製時的鹼基配對,導致突變。 [4][5][6]

6-4光產物又稱6,4嘧啶-嘧啶酮。它的生成率只有環丁烷嘧啶二聚體的三分之一,但有更大可能引發突變。[7]孢子光產物溶酶為修複胸腺嘧啶二聚體的另一途徑[8]

誘變

跨損傷聚合酶常令嘧啶二聚體轉化為突變。這種反應於原核生物SOS反應)及真核生物中都存在。雖然胸腺嘧啶二聚體是在紫外線損傷中較為常見,但因跨損傷聚合酶較常以腺嘌呤修復DNA,故胸腺嘧啶二聚體通常能正確修複。反之,環丁烷型嘧啶二聚體中的胞嘧啶則易受脫氨作用攻擊,轉化為胸腺嘧啶。[9]

DNA修復

 
黑色素瘤,一種皮膚癌

嘧啶二聚體會導致DNA的局部構象改變,故可被修復酶察覺[10]。在絕大部分的生物中,損害亦可藉由光致活作用修複,但諸如人類的胎盤動物則無此機制[11]。光致活作用中,光裂合酶將環丁烷嘧啶二聚體直接以光化學作用還原。修復酶察覺損傷後,會吸收波長>300 nm的光線(即螢光及紫外光),令光化學作用產生,將二聚體還原。[12]

核苷酸切除修復則是更通用的DNA維修方式。在這過程中,環丁烷嘧啶二聚體被切除,並合成新的DNA來填補該區域。[12]著色性乾皮症正是因患者無法進行核苷酸切除修復而導致的遺傳病,患者皮膚細胞被紫外光破壞後無法修復,導致皮膚變色及誘發癌變。人類中,沒有修復的嘧啶二聚體可引致黑色素瘤。[13]

參考文獻

  1. ^ S. E. Whitmore; C. S. Potten; C. A. Chadwick; P. T. Strickland; W. L. Morison. Effect of photoreactivating light on UV radiation-induced alterations in human skin. Photodermatol. Photoimmunol. Photomed. 2001, 17 (5): 213–217. PMID 11555330. doi:10.1034/j.1600-0781.2001.170502.x (英語). 
  2. ^ David S. Goodsell. The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers. The Oncologist. 2001, 6 (3): 298–299 [2018-02-16]. PMID 11423677. doi:10.1634/theoncologist.6-3-298. (原始內容存檔於2009-04-30) (英語). 
  3. ^ E. C. Friedberg; G. C. Walker; W. Siede; R. D. Wood; R. A. Schultz & T. Ellenberger. DNA repair and mutagenesis. Washington: ASM Press. 2006: 1118. ISBN 978-1-55581-319-2 (英語). 
  4. ^ R. B. Setlow. Cyclobutane-Type Pyrimidine Dimers in Polynucleotides. Science. 1966, 153 (3734): 379–386. PMID 5328566. doi:10.1126/science.153.3734.379 (英語). 
  5. ^ Expert reviews in molecular medicine. Structure of the major UV-induced photoproducts in DNA. (PDF). Cambridge University Press. 2 December 2002 [2018年2月16日]. (原始內容 (PDF)存檔於2005年3月21日) (英語). 
  6. ^ Christopher Mathews & K.E. Van Holde. Biochemistry 2nd. Benjamin Cummings Publication. 1990: 1168. ISBN 978-0-8053-5015-9 (英語). 
  7. ^ Van Holde, K. E.; Mathews, Christopher K. Biochemistry. Menlo Park, Calif: Benjamin/Cummings Pub. Co. 1990. ISBN 0-8053-5015-2 (英語). 
  8. ^ Jeffrey M. Buis; Jennifer Cheek; Efthalia Kalliri & Joan B. Broderick. Characterization of an Active Spore Photoproduct Lyase, a DNA Repair Enzyme in the Radical S-Adenosylmethionine Superfamily. Journal of Biological Chemistry. 2006, 281 (36): 25994–26003. PMID 16829680. doi:10.1074/jbc.M603931200 (英語). 
  9. ^ J. H. Choi; A. Besaratinia; D. H. Lee; C. S. Lee; G. P. Pfeifer. The role of DNA polymerase iota in UV mutational spectra. Mutat. Res. 2006, 599 (1–2): 58–65. PMID 16472831. doi:10.1016/j.mrfmmm.2006.01.003 (英語). 
  10. ^ Kemmink Johan; Boelens Rolf; Koning Thea M.G.; Kaptein Robert; Van, der Morel Gijs A.; Van Boom Jacques H. Conformational Changes in the oligonucleotide duplex d(GCGTTGCG)•d(GCGAAGCG) induced by formation of a cissyn thymine dimer. European Journal of Biochemistry. 1987, 162: 31–43. PMID 3028790. doi:10.1111/j.1432-1033.1987.tb10538.x (英語). 
  11. ^ Essen LO, Klar T. Light-driven DNA repair by photolyases. Cell Mol Life Sci. 2006, 63 (11): 1266–77. PMID 16699813. doi:10.1007/s00018-005-5447-y (英語). 
  12. ^ 12.0 12.1 Friedberg, Errol C. DNA Damage and Repair. Nature. 2003-01-23, 421 (6921): 436–440. PMID 12540918. doi:10.1038/nature01408 (英語). 
  13. ^ Vink Arie A.; Roza Len. Biological consequences of cyclobutane pyrimidine dimers. Journal of Photochemistry and Photobiology B: Biology. 2001, 65 (2–3): 101–104. doi:10.1016/S1011-1344(01)00245-7 (英語).