莽草酸途徑

莽草酸途徑(英語:shikimic acid pathway,又叫做分支酸途徑,Chorismate pathway)是一個存在於細菌子囊菌類真菌頂複門藻類以及植物中的代謝途徑[1],用於芳香族胺基酸苯丙胺酸酪胺酸色胺酸)的生物合成

這個代謝途徑在動物中不存在,因此對於動物而言這些胺基酸是必需胺基酸,無法自己製造(但這三者的有些胺基酸可以另闢途徑合成,如酪胺酸是在人體由苯丙胺酸合成的方法所得,雖然酪胺酸不是必需胺基酸之一,他的合成來源苯丙胺酸則是必需胺基酸之一,因此依然要先有必需胺基酸的攝取才能合成出來),要通過食物中的細菌或者植物(或者吃細菌或者植物的動物)攝取。

參與莽草酸途徑的七種酶是DAHP合酶英語DAHP synthase3-去氫奎尼酸合酶英語3-dehydroquinate synthase3-去氫奎尼酸脫水酶英語3-dehydroquinate dehydratase莽草酸去氫酶莽草酸激酶英語shikimate kinaseEPSP合酶英語EPSP synthase,和分支酸合酶英語chorismate synthase。部分真核生物存在五功能arom蛋白維基資料所列Q24722697,把前五個酶融合到一個基因[2]

莽草酸的合成

莽草酸合成的兩種初始受質是糖解糖質新生途徑中的磷酸烯醇式丙酮酸卡爾文循環磷酸戊醣途徑中的赤藻糖-4-磷酸,它們由DAHP合酶英語DAHP synthase催化合成為3-去氧-D-阿醣苷基庚糖酮酸-7-磷酸(DAHP),並釋放一個磷酸。DAHP再由3-去氫奎尼酸合酶英語3-dehydroquinate synthase環化3-去氫奎尼酸(DHQ)。[3]

 

3-去氫奎尼酸再由3-去氫奎尼酸脫水酶英語3-dehydroquinate dehydratase脫水形成3-去氫莽草酸,之後在去氫莽草酸還原酶作用下,3-去氫莽草酸消耗一個NADPH還原為莽草酸

 

從莽草酸到芳香族胺基酸

莽草酸合成後的第一個莽草酸激酶英語shikimate kinase,消耗ATP催化莽草酸磷酸化莽草酸-3-磷酸英語shikimate 3-phosphate[4]。莽草酸-3-磷酸再由EPSP合酶英語EPSP synthase催化與磷酸烯醇式丙酮酸結合形成5-烯醇式丙酮酸莽草酸-3-磷酸(EPSP)。

 

5-烯醇式丙酮酸莽草酸-3-磷酸再通過分支酸合酶英語chorismate synthase轉化為分支酸

 

分支酸分支酸變位酶英語Chorismate mutase催化下進行克萊森重排形成預苯酸[5][6]

 

到酪胺酸

預苯酸在預苯酸去氫酶英語Prephenate dehydrogenase催化下發生氧化脫羧(但保留羥基)形成對羥基苯丙酮酸p-hydroxyphenylpyruvate,又叫4-羥苯丙酮酸)。再通過酪胺酸轉胺酶英語Tyrosine aminotransferase麩胺酸發生轉胺基作用生成酪胺酸α-酮戊二酸

 

到苯丙胺酸

預苯酸由預苯酸脫水酶英語Prephenate dehydratase催化脫羧(不保留羥基)形成苯丙酮酸[7],再與麩胺酸發生轉胺基作用生成苯丙胺酸[8]

 

到色胺酸

 

分支酸支路

從分支酸開始,有多條支路合成以下多種有機化合物,分支酸也因此得名。[9]

前酪胺酸途徑

在部分植物[10]與細菌[11]中,酪胺酸和苯丙胺酸的合成途徑與以上有所不同,稱為「前酪胺酸途徑」(arogenate pathway),它先由預苯酸在轉氨後形成L-前酪胺酸(L-arogenate),再通過前酪胺酸去氫酶英語Arogenate dehydrogenase形成酪胺酸或通過前酪胺酸脫水酶英語Arogenate dehydratase形成苯丙胺酸(如圖)。

 

參考文獻

引用

  1. ^ Richards, TA; Dacks, JB; Campbell, SA; Blanchard, JL; Foster, PG; McLeod, R; Roberts, CW. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements.. Eukaryotic cell. 2006-09, 5 (9): 1517–31. PMID 16963634. doi:10.1128/EC.00106-06. 
  2. ^ Ahmed, SI; Giles, NH. Organization of enzymes in the common aromatic synthetic pathway: evidence for aggregation in fungi.. Journal of bacteriology. 1969-07, 99 (1): 231–7. PMID 5802608. doi:10.1128/jb.99.1.231-237.1969. 
  3. ^ D. E. Metzler: Biochemistry. The Chemical Reactions of Living Cells. Volume 2. Elsevier Science, 2003; S. 1420–1471 ; ISBN 0-12-492541-3.
  4. ^ Klaus M. Herrmann, Lisa M. Weaver. THE SHIKIMATE PATHWAY. Annual Review of Plant Physiology and Plant Molecular Biology. 1999-6, 50: 473–503 [2019-02-12]. ISSN 1040-2519. PMID 15012217. doi:10.1146/annurev.arplant.50.1.473. (原始內容存檔於2019-09-30). 
  5. ^ Helmut Goerisch. On the mechanism of the chorismate mutase reaction. Biochemistry. 1978, 17 (18): 3700. doi:10.1021/bi00611a004. 
  6. ^ Peter Kast, Yadu B. Tewari, Olaf Wiest, Donald Hilvert, Kendall N. Houk, and Robert N. Goldberg. Thermodynamics of the Conversion of Chorismate to Prephenate: Experimental Results and Theoretical Predictions. J. Phys. Chem. B. 1997, 101 (50): 10976–10982. doi:10.1021/jp972501l. 
  7. ^ Schmit, JC; Zalkin, H. Chorismate mutase-prephenate dehydratase. Partial purification and properties of the enzyme from Salmonella typhimurium.. Biochemistry. 1969-01, 8 (1): 174–81. PMID 4887851. doi:10.1021/bi00829a025. 
  8. ^ COTTON, RG; GIBSON, F. THE BIOSYNTHESIS OF PHENYLALANINE AND TYROSINE; ENZYMES CONVERTING CHORISMIC ACID INTO PREPHENIC ACID AND THEIR RELATIONSHIPS TO PREPHENATE DEHYDRATASE AND PREPHENATE DEHYDROGENASE.. Biochimica et biophysica acta. 1965-04-12, 100: 76–88. PMID 14323651. doi:10.1016/0304-4165(65)90429-0. 
  9. ^ P. M. Dewick: Medicinal Natural Products: A Biosynthetic Approach. 3. Auflage, John Wiley & Sons Ltd., 2009; S. 137–186; ISBN 978-0-470-74167-2.
  10. ^ Cho, Man-Ho; Corea, Oliver R. A.; Yang, Hong; Bedgar, Diana L.; Laskar, Dhrubojyoti D.; Anterola, Aldwin M.; et al. Phenylalanine biosynthesis in Arabidopsis thaliana-- identification and characterization of arogenate dehydratases. J. Biol. Chem. 2007, 282 (42): 30827–35. PMID 17726025. doi:10.1074/jbc.m702662200. 
  11. ^ Zhao, G; Xia, T; Fischer, RS; Jensen, RA. Cyclohexadienyl dehydratase from Pseudomonas aeruginosa. Molecular cloning of the gene and characterization of the gene product. J. Biol. Chem. 1992, 267 (4): 2487–2493. PMID 1733946. 

來源

  • Brown, Stewart A.; Neish, A. C. Shikimic Acid as a Precursor in Lignin Biosynthesis. Nature. 1955, 175 (4459): 688–689. ISSN 0028-0836. doi:10.1038/175688a0. 
  • Weinstein, L. H.; Porter, C. A.; Laurencot, H. J. Role of the Shikimic Acid Pathway in the Formation of Tryptophan in Higher Plants : Evidence for an Alternative Pathway in the Bean. Nature. 1962, 194 (4824): 205–206. ISSN 0028-0836. doi:10.1038/194205a0. 
  • Wilson, D J; Patton, S; Florova, G; Hale, V; Reynolds, K A. The shikimic acid pathway and polyketide biosynthesis. Journal of Industrial Microbiology and Biotechnology. 1998, 20 (5): 299–303. ISSN 1367-5435. doi:10.1038/sj.jim.2900527.