接地系统

在供电系统中,接地系统决定了电极对地球表面的电势。对接地系统的选择直接影响安全和电源的电磁兼容性,不同国家的标准和管理规定可以相差很大。大部分的接地系统都会将其中一个电源电极与大地直接相接,如果一个电器设备发生故障,使得火线(未接地的电源电极)接触到设备裸露的導電表面,那么任何一个与大地在电气上相连的人(比如站在地球表面或触碰接地池)触碰该设备表面将形成一个回路,电流返回到那个已接地的电源电极,造成触电。

保护接地,在美国国家电气代号NEC中称为设备接地极(equipment grounding conductor),将裸露的导電表面保持在与地相同的电势,从而避免这种危害。为了避免可能产生压降的压降,正常情况下,该极是不允许有电流流过的,但故障电流通常可以熔断保险丝或触发空气开关动作,从而保护电路。不足以触发过流保护的高阻抗的“相-地”故障还是有可能触发剩余电流(零序电流,漏电电流)装置(如果有的话) -(北美称之为接地故障电路断路器,GFCI)

相反,功能性的接地目的不是为了防止触电,而且可能通常会有电流通过。使用功能性接地的设备包括浪涌电流抑制器,电磁干扰滤波器,某些天线和测量仪器,但功能性接地的最重要的例子还是供电系统的中性点,该带电流的电极被接地,为了防止地电流,通常(但不尽然)是单点接地。在NEC中称之为接地的电源极(GroundED supply conductor),以此来区分设备接地极(equipment grounding conductor)。

在大多数的发达国家,带接地触头的230V电源插座都是在二战前后开用应用的,虽然各国流行的变种差别很大。在美国和加拿大,60年代中期(1960s)以前安装的120V插座通常是不带接地插孔的。在发展中国家,就地的接线施工可能没有连接插座上的接地孔。在没有提供电源地的时候,需要接地的设备通常会使用电源的中性点,有些使用接地棒。很多110V用电器的插头是分极性的,以区分相线和中性线,但用电源中性线作为设备接地线是有很大隐患的,插座或插头上的相线和中性线可能意外地弄反了,或者中性线与地没有连接上或者没有很好地安装好。中性线中正常的负载电流都有可能产生危险的压降。由于这些原因,多数国家已经强制使用现在已经很普遍的专用保护接地连接。

歷史沿革

電報發明後,最早的接地導體出現在1820年代。1923年在法國。通過制定電氣安裝的“標準”,制定了特定的接地標準。1973年,決定使用TN網絡。

分類

国际标准IEC60364区分了三大类接地系统,使用两个字母代号表示TN,TT和IT。

 
接地線選型

第一个字母表示供电设备(发电机或变压器)与地的连接,第二个字母表示提供给用电设备的与地连接。

T: 将一点直接与地相接(terra)
I: 没有与地相接的点(isolation),或是通过一个高阻抗。
N: 在安装位置直接与接地的中性点相接。
 
接地連接器

第三、四個字母表示保護導體(PE)及中性導體(N)是否共用同一導體。

C: 保護導體及中性導體是混合的(Combine)
S: 保護導體及中性導體是分開的(Separate)

TN系統

在TN接地系统中,发电机或变压器的其中一点与地相接,通常是三相系统中的星点。用电设备的外壳通过变压器的这个接地点与地相接。

TN-S系統中,由變壓器到最終電路均設有獨立的保護導體(PE)及中性導體(N)
TN-C系統中,保護導體及中性導體混合在一起(PEN)
TN-C-S系統中,由變壓器到總電掣櫃,保護導體及中性導體混合在一起(PEN),之後分開獨立的PE及N
     
TN-S 系統 TN-C 系統 TN-C-S 系統

TT系統

 
TT 系統

在TT系統中,发电机/变压器與客戶端各自接地,兩者沒有使用保護導體(PE)相連。

TT系統最大的好處是減少PE干擾客戶端設備的問題。一些特別設備(如電訊系統)需要一個沒有雜訊的接地極(Clean Earth),與普通的接地極(Dirty Earth)分開。由於客戶端擁有自己的接地極,因此沒有中線斷開所產生的安全問題。

IT系統

 
IT 系統

在IT系統中,发电机/变压器沒有接地或以高阻抗接地,客戶端則擁有自己的接地極。

相比TN及TT系統,IT系統出現相-地短路(line-to-ground fault)時仍可正常運作,但其餘兩個相的對地電壓會由VLN變成VLL。由於故障電流很小,因此所有電路都需要使用漏電斷路器(RCD)來保護。

印度,礦場必須在中線加入電阻接地,確保故障電流不大於750mA,防止巨大的故障電流點燃可燃氣體,同理,也可以確保地底下的供電系統不會因小事故而中斷。

 
接地棒的物理模型

接地導體的類型

  • 單接地
  • 組接地導體
  • 接地網
  • 接地板

土壤的电导率

 
溫納法土壤電阻率

地質材料的抵抗力取決於幾個組成部分:金屬礦石的存在,地質層的溫度,考古或結構特徵的存在,溶解的鹽和污染物(孔隙度和滲透率)的存在。

接地電阻的測量是接地設備設計中的重要方面。 從其電阻取決於接地裝置的電阻。 有兩種測量土壤阻力的方法:斯倫貝謝方法和維納斯方法。

參見

  • 馬琳娜·約達諾娃,葉夫根尼·馬列夫 - 建築物的接地和避雷系統
  • 接地
  • 中性導體