计算符号学

计算符号学(英语:computational semiotics)是一个跨学科领域,其研究、应用和借鉴领域涵盖了逻辑数学计算理论实践形式自然语言研究、一般认知科学,以及符号学本身。该术语既涵盖了符号学在计算机硬件和软件设计中的应用,也包括使用计算来执行符号学分析。前者侧重于符号学可以为计算带来什么;后者与计算能给符号学带来什么有关。

计算符号学

该领域的一个共同主题是以符号理论视角看待人工智能知识表示的问题。其许多应用场景是人机交互和基本识别装置。

代数符号学是该领域的一部分,它结合了代数规范和社会符号学的各个方面,已应用于用户界面设计和数学证明的呈现。

符号学的计算方法

欲进行符号学的计算,需要将符号学分析方法形式化,并以计算机算法来实现,以之来处理大型数据集。这些数据集通常是文本,但符号学也为分析其他类型的数据开辟了道路。现有研究已提供自动化的对立分析和语义方阵生成[1]、隐喻识别[2]和图像分析[3]的方法。 Shackell[4]提议,应该开辟自然符号处理的一个新领域,将自然语言处理扩展到具有重要的文化意义的或语言学之外的领域,例如应用于说服技术营销品牌分析等。另一方面,Meunier认为符号学和计算是兼容的,二者结合可以在理解意义的形式上提供更好的逻辑一致性。[5]

参见

参考文献

  1. ^ Shackell, Cameron; Sitbon, Laurianne. Computational opposition analysis using word embeddings: A method for strategising resonant informal argument. Argument & Computation. 2020-01-29, 10 (3): 301–317. doi:10.3233/AAC-190467 . 
  2. ^ Neuman, Yair; Danesi, Marcel; Cohen, Yochai; Assaf, Dan. Opposition theory and computational semiotics. Σημειωτκή - Sign Systems Studies. 2015, 43 (2–3): 159–172 [2023-05-30]. ISSN 1406-4243. doi:10.12697/SSS.2015.43.2-3.01 . (原始内容存档于2023-06-04) (英语). 
  3. ^ Chartier, Jean-François; Pulizzotto, Davide; Chartrand, Louis; Meunier, Jean-Guy. A data-driven computational semiotics: The semantic vector space of Magritte's artworks. Semiotica. 2019-10-25, 2019 (230): 19–69. ISSN 0037-1998. S2CID 203304655. doi:10.1515/sem-2018-0120. 
  4. ^ Shackell, C. Finite semiotics: Cognitive sets, semiotic vectors, and semiosic oscillation. Semiotica. 26 July 2019, 2019 (229): 211–235 [2023-05-30]. S2CID 67111370. doi:10.1515/sem-2017-0127. (原始内容存档于2023-03-26). 
  5. ^ Meunier, Jean Guy. Computational Semiotics. Bloomsbury Academic. 2021. ISBN 9781350166622 (English). 

延伸阅读

  • Meunier, J.G. (2021). Computational Semiotics, Bloomsburry Academic.
  • Andersen, P.B. (1991). A Theory of Computer Semiotics, Cambridge University Press页面存档备份,存于互联网档案馆).
  • de Souza, C.S., The Semiotic Engineering of Human-Computer Interaction, MIT Press, Cambridge, MA, 2005.
  • Tanaka-Ishii, K. (2010), "Semiotics of Programming", Cambridge University Press页面存档备份,存于互联网档案馆).
  • Hugo, J. (2005), "The Semiotics of Control Room Situation Awareness", Fourth International Cyberspace Conference on Ergonomics, Virtual Conference, 15 Sep – 15 Oct 2005. Eprint页面存档备份,存于互联网档案馆
  • Gudwin, R.; Queiroz J. (eds) - Semiotics and Intelligent Systems Development - Idea Group Publishing, Hershey PA, USA (2006), ISBN 1-59904-063-8 (hardcover), 1-59904-064-6 (softcover), 1-59904-065-4 (e-book), 352 ps. Link to publisher页面存档备份,存于互联网档案馆
  • Gudwin, R.; Queiroz, J. - Towards an Introduction to Computational Semiotics - Proceedings of the 2005 IEEE International Conference on Integration of Knowledge Intensive Multi-Agent Systems - KIMAS'05, 18–21 April 2005, Waltham, MA, USA, pp. 393–398.IEEExplore
  • Mili, A., Desharnais, J., Mili, F., with Frappier, M., Computer Program Construction, Oxford University Press, New York, NY, 1994. — Introduction to Tarskian relation theory and its applications within the relational programming paradigm.
  • Rieger, Burghard B.: Computing Granular Word Meanings. A fuzzy linguistic approach to Computational Semiotics, in: Wang, Paul P. (ed.): Computing with Words. [Wiley Series on Intelligent Systems 3], New York (John Wiley & Sons) 2001, pp. 147–208.
  • Rieger, Burghard B.: Computing Fuzzy Semantic Granules from Natural Language Texts. A computational semiotics approach to understanding word meanings, in: Hamza, M.H. (ed.): Artificial Intelligence and Soft Computing, Proceedings of the IASTED International Conference, Anaheim/ Calgary/ Zürich (IASTED/ Acta Press) 1999, pp. 475–479.
  • Rieger, Burghard B.: A Systems Theoretical View on Computational Semiotics. Modeling text understanding as meaning constitution by SCIPS, in: Proceedings of the Joint IEEE Conference on the Science and Technology of Intelligent Systems (ISIC/CIRA/ISAS-98), Piscataway, NJ (IEEE/Omnipress) 1998, pp. 840–845. IEEExplore页面存档备份,存于互联网档案馆
  • Shackell, C.; Sitbon, Laurianne. Computational opposition analysis using word embeddings: A method for strategising resonant informal argument. Argument & Computation. 2019, 10 (3): 301–317. doi:10.3233/AAC-190467 . 

外部链接