-范数(英语:-norm,亦称-范数、-范数)是向量空间中的一组范数-范数与幂平均有一定的联系。它的定义如下:

的不同取值

 
图中的 即是 范数中的 。这是当 取不同值时,在 空间上的 -范数等高线的其中一条。该图展现了各 -范数的形状。
  •  :  [来源请求]
  •   ,也就是所有 中,不等于零的个数。注意,这里的 -范数并非通常意义上的范数(不满足三角不等式次可加性)。[1]
  •   ,即 -范数是向量各分量绝对值之和,又称曼哈顿距离
  •  :  ,此即欧氏距离
  •  :  ,此即无穷范数最大范数,亦称切比雪夫距离

在机器学习中的应用

在机器学习中,为了对抗过拟合、提高模型的泛化能力,可以通过向目标函数当中引入参数向量的 -范数来进行正则化。其中最常用的是引入 -范数的 -正则项和引入 -范数的 -正则项;前者有利于得到稀疏解,后者有利于得到平滑解

参考文献

  1. ^ 但在   当中,它就是欧氏距离;在 当中,它是平凡的。