均方根誤差

均方根偏差均方根差,英語:root-mean-square deviationRMSD)或均方根誤差root-mean-square errorRMSE)是常用於衡量模型預測值或估計量(樣本值或總體值)與觀測值之間差異的一種指標。均方根偏差代表預測值和觀察值之差的二階樣本的平方根(樣本標準差),或該差值的平方平均數。當這些離差是以用來計算估計量的數據樣本本身來計算時,通常稱差值為殘差residual);當差值不基於樣本得出的估計量時,通常稱為誤差(error)或預測誤差(prediction errors)。均方根誤差主要作用是將各個數據點的預測的誤差大小彙總為一個預測力的度量。均方根誤差是精度的度量,用於比較特定數據集的不同模型的預測誤差,但不能比較數據集之間的預測誤差,因為它是尺度依賴的。[1]

均方根誤差總是非負的,值為0(實際極少出現)的情況表示與數據完全吻合。一般而言,低RMSD比高RMSD要好。然而,在不同類型的數據之間進行比較是無意義的,因為度量取決於所使用的數字的尺度。

均方根誤差是平方誤差平均值的平方根。各個誤差對均方根誤差的影響與平方誤差的大小成正比;因此,較大的誤差對均方根誤差有不成比例的大影響。因此,均方根誤差對離群值很敏感。[2][3]

公式

估計量 相對於被估計參數 的均方根誤差的定義是均方誤差的平方根:

 

對於一個無偏估計量(unbiased estimator),均方根差是變異數的平方根,即標準差

迴歸分析中,時間為t應變數 的迴歸預測值 在觀察次數為T時的均方根差,可以作為T次不同的預測,計算方式為離差平方的均值的平方根:

 

(對於橫截面數據回歸,下標ti取代,Tn取代。)

在某些情況下,均方根差被用來比較兩個事物之間的不同(可能沒有哪個被視為「標準」)。例如,在量度兩個時間序列  的平均偏差時,均方根偏差的式子會變成

 

正規化均方根誤差

將均方根誤差正規化,可以使不同數值範圍的資料集之間更易於比較。雖然目前並沒有一個一致的方法來正規化均方根差,但較常用平均值或是極差(最大和最少值之差)來正規化被量測的資料。

  .

這個值常稱為正規化均方根偏差(NRMSD)或正規化均方根誤差(NRMSE),常以百分比形式表示。比例的值較低時代表殘差變異數較小。在很多情況下,特別是取較小的樣本的時候,樣本的範圍容易被樣本的大小影響,其準確度可能就受到影響。

另一種使均方根誤差能用於橫向比較的方法是將其除以四分位距。用四分位距來除均方根誤差,得到的正規化數值對目標變量中的極端值不那麼敏感。

 ,其中 

  ,其中「−1」為分位函數

當以量測值的平均值來正規化時,可使用術語「均方根誤差變異係數」來避免歧義,記作CV(RMSD)。[4]它的計算方式和變異係數相似,但是以均方根差取代標準差:

 

應用

  • 氣象學上,可用來評估一個數值模型可以多好地預測大氣層的行為。
  • 生物資訊學中,均方根差被用來量測重疊蛋白質(superimposed proteins)分子間的距離。
  • 在結構藥物設計中,均方根差被用來測量配體(ligand)的晶格構造以及對接預測(docking prediction)。
  • 經濟學中,均方根差被用來確定一個模型是否吻合經濟指標。部分專家曾提出均方根差不如相對絕對誤差(relative absolute error)可靠。[5]
  • 在實驗心理學中,分均根差被用來指示一個數學或計算行為模型(mathematical or computational models)能解釋實際觀察行為的良好程度。
  • 地理信息系統(GIS)中,均方根誤差是一種用來評價空間分析遙測精度的量度。
  • 水文地質學中,均方根差和正規化均方根差被用來評估地下水模型校正。[6]
  • 在影像科學中,均方根差是一種峰值訊噪比,是一種用來評價一個方法相對原始圖像能多好地重建原來的圖像的方法。
  • 計算神經科學中,均方根差被用來檢視一個系統能學習一個給定模型的能力。[7]
  • 蛋白質核磁共振光譜學中,均方根差被用來當作一個評估結構品質的量度。

參見

參考文獻

  1. ^ Hyndman, Rob J.; Koehler, Anne B. Another look at measures of forecast accuracy. International Journal of Forecasting. 2006, 22 (4): 679–688. CiteSeerX 10.1.1.154.9771 . doi:10.1016/j.ijforecast.2006.03.001. 
  2. ^ Pontius, Robert; Thontteh, Olufunmilayo; Chen, Hao. Components of information for multiple resolution comparison between maps that share a real variable. Environmental Ecological Statistics. 2008, 15 (2): 111–142. doi:10.1007/s10651-007-0043-y. 
  3. ^ Willmott, Cort; Matsuura, Kenji. On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. International Journal of Geographical Information Science. 2006, 20: 89–102. doi:10.1080/13658810500286976. 
  4. ^ FAQ: What is the coefficient of variation?. [19 February 2019]. (原始內容存檔於2021-12-16). 
  5. ^ Armstrong, J. Scott; Collopy, Fred. Error Measures For Generalizing About Forecasting Methods: Empirical Comparisons (PDF). International Journal of Forecasting. 1992, 8 (1): 69–80 [2022-06-16]. CiteSeerX 10.1.1.423.508 . doi:10.1016/0169-2070(92)90008-w. (原始內容存檔 (PDF)於2021-07-06). 
  6. ^ Anderson, M.P.; Woessner, W.W. Applied Groundwater Modeling: Simulation of Flow and Advective Transport 2nd. Academic Press. 1992. 
  7. ^ Ensemble Neural Network Model. [2022-06-16]. (原始內容存檔於2021-09-21).