RAN轉譯全稱為重複區關聯的非AUG轉譯(英語:Repeat Associated Non-AUG translation),是真核生物細胞中一種異常的mRNA轉譯機制,發生在具簡單重複序列(微衛星)的mRNA上,不需起始密碼子AUG即可轉譯重複序列,產生由一或兩種(少數案例為數種)胺基酸組成的重複蛋白。此轉譯機制最早於2011年在第八型小腦萎縮症(SCA8)與第一型強直性肌肉失養症(DM1)患者中發現[1][2],上述兩種疾病與亨丁頓舞蹈症肌萎縮性脊髓側索硬化症等數種神經退化性疾病患者的某些基因中皆有三核苷酸重複序列擴增,在神經組織中由RAN轉譯生成重複蛋白,可能與其致病原因有關。目前對RAN轉譯的詳細過程與調控機制尚不清楚。

亨丁頓舞蹈症病患的Htt英語Huntingtin基因的CAG重複數目較一般人多,可進行RAN轉譯產生致病蛋白

機制

絕大多數的真核轉譯是始於起始密碼子AUG,其中多數依賴5′端帽(少數病毒mRNA則是使用內部核糖體進入位點),轉譯起始時eIF4F複合體與mRNA的5′端帽結合,核糖體小次單元英語Eukaryotic small ribosomal subunit (40S)、起始tRNAeIF1等蛋白組成43S前起始複合物,並從mRNA的5′往3′掃描,直到發現AUG後開始轉譯[3]。RAN轉譯則發生在一些具有簡單重複序列(微衛星)的mRNA,不使用AUG作為起始密碼子,可能自重複序列上游近似AUG的密碼子(如CUG)起始,也可能自重複序列開始轉譯[4],通常沒有固定的開放閱讀框,可產生多種可能對細胞具毒性的單胺基酸重複蛋白或二肽重複蛋白(DPR)[5]。簡單重複序列可能位於mRNA的5′非轉譯區編碼區內含子[6],有些案例中與基因互補的另一股DNA也會被轉錄成mRNA反義RNA),且兩者的重複序列均能以所有開放閱讀框進行RAN轉譯,因此最多能產生6種重複蛋白[7]。除人類細胞外,已知酵母菌也可進行RAN轉譯[8]

許多神經退化性疾病與基因中微衛星序列重複數異常有關,通稱三核苷酸重複序列疾病英語trinucleotide repeat disorder,過去多認為此突變表現的RNA或蛋白為致病主因,近年則有觀點認為RAN轉譯可能為這些疾病的致病機制之一[4],但也有研究結果不支持此結論[9]。RAN轉譯的詳細機制有待更多研究闡明,尚不清楚此過程較近似一般的5′端帽依賴型轉譯或內部核糖體進入位點依賴型轉譯,有證據顯示此過程需5′端帽,轉譯起始時可能核糖體也有從mRNA5′往3′掃描的過程,也有證據顯示其起始和重複序列形成的二級結構有關[6]。RAN轉譯也受到一些細胞反應調控,例如整合應激反應英語integrated stress response時會抑制一般轉譯,但可能促進RAN轉譯的進行[4];另外有研究發現核糖體蛋白RPS25英語RPS25對RAN轉譯相當重要[8]。目前對RAN轉譯的了解大多侷限於其在神經退化性疾病中扮演的角色,對正常狀態下(序列重複數正常的個體中)的RAN轉譯了解甚少,有研究結果顯示FMR1英語FMR1基因中的RAN轉譯可抑制正常FMR1蛋白(FMRP)的表現,因而有類似上游開放閱讀框(uORF)的功能[10]

案例

RAN轉譯已在數種神經退化性疾病患者中發現,包括第八型小腦萎縮症(SCA8)患者ATXN8英語Twinkle (protein)基因的CAG重複與ATXN8OS英語ATXN8OS的CTG重複、第31型小腦萎縮症(SCA31)患者BEAN基因的TGGAA重複與SCA31-AS的TTCCA重複、額顳葉失智症(FTD)與肌萎縮性脊髓側索硬化症(ALS)患者C9ORF72英語C9ORF72基因的GGGGCC重複與C9orf72-AS的GGCCCC重複、第一型強直性肌肉失養症(DM1)患者DMPK基因基因的CTG重複與DM1-AS的CAG重複、第二型強直性肌肉失養症(DM2)患者CNBP英語CNBP基因中的CCTG重複與DM2-AS的CAGG重複、亨丁頓舞蹈症患者Htt1英語Huntingtin基因的CAG重複與HTT-AS1英語HTT-AS1的CTG重複、福斯氏角膜內皮失養症英語Fuchs endothelial corneal dystrophy(FECD)患者TCF4英語TCF4基因的CTG重複與TCF4-AS的CAG重複等[4]

C9ORF72

人類神經組織中表現的C9ORF72英語C9ORF72基因一般有20至30個GGGGCC的短重複序列[11][12] ,少數人在此位點發生突變而具有上百個短重複序列[13] ,可能導致額顳葉失智症(FTD)或肌萎縮性脊髓側索硬化症(ALS),其致病機制可能為影響和一些蛋白英語RNA-binding protein的結合能力,降低正常C9ORF72蛋白的表現量,或者是RAN轉譯所致,此位點的三個開放閱讀框分別可轉譯出數種二肽重複蛋白,包括多甘氨酸-丙氨酸(poly GA)、多甘氨酸-脯氨酸(poly GP)、多甘氨酸-精氨酸(poly GR)等,可能在神經元中具有毒性而致病[14][15],有約40%的FTD和約10%的ALS患者具有此突變[16],且與此基因互補的另一股DNA也會轉錄成mRNA並進行RAN轉譯,因此共能產生六種重複蛋白[4]。C9ORF72進行RAN轉譯可能使用上游的CUG密碼子作為起始,此起始不只可轉譯出GA重複蛋白,還可能藉G-四聯體介導的轉譯連讀英語ribosome frameshifting轉譯出GP與GR重複蛋白。另外此基因內含子中有一個上游開放閱讀框(uORF)可抑制RAN轉譯[17]

X染色體脆折症運動失調症候群

X染色體脆折症運動失調症候群英語Fragile X-associated tremor/ataxia syndromeFMR1英語FMR1基因的CGG重複序列有關,多數人在此區域的重複少於50個,而此症病患大多有超過200個重複[18],此位點可轉譯出由甘氨酸組成的重複多肽,且其轉譯始於重複序列上游的一個特殊起始密碼子ACG[19][20]

亨丁頓舞蹈症

亨丁頓舞蹈症是Htt1基因中的CAG重複序列擴增造成,可以所有開放閱讀框進行RAN轉譯產生多麩醯胺酸、多丙氨酸和多絲氨酸三種重複蛋白,且與其互補的DNA也會轉錄成mRNA(具CUG重複序列),亦可以所有開放閱讀框進行RAN轉譯產生多白胺酸、多半胱氨酸和多丙氨酸等三種重複蛋白,具突變的老鼠模型顯示這些重複蛋白在前額葉小腦的腦區累積,可能造成神經發炎等損傷[21]

參考文獻

  1. ^ Zu, T.; Gibbens, B.; Doty, N. S.; Gomes-Pereira, M.; Huguet, A.; Stone, M. D.; Margolis, J.; Peterson, M.; Markowski, T. W.; Ingram, M. A. C.; Nan, Z.; Forster, C.; Low, W. C.; Schoser, B.; Somia, N. V.; Clark, H. B.; Schmechel, S.; Bitterman, P. B.; Gourdon, G.; Swanson, M. S.; Moseley, M.; Ranum, L. P. W. Non-ATG-initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences. 2010, 108 (1): 260–265. ISSN 0027-8424. PMC 3017129 . PMID 21173221. doi:10.1073/pnas.1013343108. 
  2. ^ Copenhaver, Gregory P.; Pearson, Christopher E. Repeat Associated Non-ATG Translation Initiation: One DNA, Two Transcripts, Seven Reading Frames, Potentially Nine Toxic Entities!. PLOS Genetics. 2011, 7 (3): e1002018. ISSN 1553-7404. PMC 3053344 . PMID 21423665. doi:10.1371/journal.pgen.1002018. 
  3. ^ Hershey, J.W.B. and W.C. Merrick. The pathway and mechanism of initiation of protein synthesis. N. Sonenberg, J. W. B. Hershey, M. B. Mathews (編). Translational Control of Gene Expression. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 2000: 185-243. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 Nguyen L, Cleary JD, Ranum LPW. Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease.. Annu Rev Neurosci. 2019, 42: 227–247. PMC 6687071 . PMID 30909783. doi:10.1146/annurev-neuro-070918-050405. 
  5. ^ Green KM, Glineburg MR, Kearse MG, Flores BN, Linsalata AE, Fedak SJ; et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response.. Nat Commun. 2017, 8 (1): 2005. PMC 5722904 . PMID 29222490. doi:10.1038/s41467-017-02200-0. 
  6. ^ 6.0 6.1 Green KM, Linsalata AE, Todd PK. RAN translation-What makes it run?. Brain Res. 2016, 1647: 30–42. PMC 5003667 . PMID 27060770. doi:10.1016/j.brainres.2016.04.003. 
  7. ^ Zu T, Liu Y, Bañez-Coronel M, Reid T, Pletnikova O, Lewis J; et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia.. Proc Natl Acad Sci U S A. 2013, 110 (51): E4968–77. PMC 3870665 . PMID 24248382. doi:10.1073/pnas.1315438110. 
  8. ^ 8.0 8.1 Yamada SB, Gendron TF, Niccoli T, Genuth NR, Grosely R, Shi Y; et al. RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats.. Nat Neurosci. 2019, 22 (9): 1383–1388. PMC 6713615 . PMID 31358992. doi:10.1038/s41593-019-0455-7. 
  9. ^ Yang S, Yang H, Huang L, Chen L, Qin Z, Li S; et al. Lack of RAN-mediated toxicity in Huntington's disease knock-in mice.. Proc Natl Acad Sci U S A. 2020, 117 (8): 4411–4417. PMC 7049130 . PMID 32029588. doi:10.1073/pnas.1919197117. 
  10. ^ Rodriguez CM, Wright SE, Kearse MG, Haenfler JM, Flores BN, Liu Y; et al. A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis.. Nat Neurosci. 2020, 23 (3): 386–397. PMC 7668390 . PMID 32066985. doi:10.1038/s41593-020-0590-1. 
  11. ^ Bigio EH. C9ORF72, the new gene on the block, causes C9FTD/ALS: new insights provided by neuropathology. Acta Neuropathologica. December 2011, 122 (6): 653–5. PMC 3262229 . PMID 22101324. doi:10.1007/s00401-011-0919-7. 
  12. ^ Fong JC, Karydas AM, Goldman JS. Genetic counseling for FTD/ALS caused by the C9ORF72 hexanucleotide expansion. Alzheimer's Research & Therapy. 2012, 4 (4): 27. PMC 3506941 . PMID 22808918. doi:10.1186/alzrt130. 
  13. ^ Khan BK, Yokoyama JS, Takada LT, Sha SJ, Rutherford NJ, Fong JC, et al. Atypical, slowly progressive behavioural variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion. Journal of Neurology, Neurosurgery, and Psychiatry. April 2012, 83 (4): 358–64. PMC 3388906 . PMID 22399793. doi:10.1136/jnnp-2011-301883. 
  14. ^ Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. March 2013, 339 (6125): 1335–8. Bibcode:2013Sci...339.1335M. PMID 23393093. doi:10.1126/science.1232927. 
  15. ^ Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. February 2013, 77 (4): 639–46. PMC 3593233 . PMID 23415312. doi:10.1016/j.neuron.2013.02.004. 
  16. ^ Babić Leko M, Župunski V, Kirincich J, Smilović D, Hortobágyi T, Hof PR, Šimić G. C9orf72 Hexanucleotide Repeat Expansion. Behavioural Neurology. 2019, 2019: 2909168. PMC 6350563 . PMID 30774737. doi:10.1155/2019/2909168. 
  17. ^ Tabet R, Schaeffer L, Freyermuth F, Jambeau M, Workman M, Lee CZ; et al. CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts.. Nat Commun. 2018, 9 (1): 152. PMC 5764992 . PMID 29323119. doi:10.1038/s41467-017-02643-5. 
  18. ^ Technical Standards and Guidelines for Fragile X. American College of Medical Genetics英語American College of Medical Genetics. 2000-10-02 [2013-03-29]. (原始內容存檔於2018-06-17). 
  19. ^ Sellier C, Buijsen RAM, He F, Natla S, Jung L, Tropel P; et al. Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome.. Neuron. 2017, 93 (2): 331–347. PMC 5263258 . PMID 28065649. doi:10.1016/j.neuron.2016.12.016. 
  20. ^ Gao FB, Richter JD. Microsatellite Expansion Diseases: Repeat Toxicity Found in Translation.. Neuron. 2017, 93 (2): 249–251. PMID 28103472. doi:10.1016/j.neuron.2017.01.001. 
  21. ^ Tarentino AL, Maley F. A comparison of the substrate specificities of endo-beta-N-acetylglucosaminidases from Streptomyces griseus and Diplococcus Pneumoniae.. Biochem Biophys Res Commun. 1975, 67 (1): 455–62. doi:10.1016/0006-291x(75)90337-x.